TraumaCad® User’s Guide

Version 2.2

A Voyant Health Ltd. Document
Copyright 2010
Important Notice

Copyright and Trademark Notices
All contents of this document are Copyright 2010 Voyant Health Ltd.
All rights reserved. The trademarks, logos and service marks displayed on this document are the property of Voyant Health Ltd. or other third parties. Users are not permitted to use these trademarks, logos and service marks without the prior written consent of Voyant Health Ltd., or such third parties as may own them.

Limited License
Voyant Health Ltd. hereby gives license to review these documents solely for non-commercial use within your organization, provided that you do not modify the content of the documents and provided any copies made retain all copyright and other proprietary notices contained therein. The information provided in these documents is permitted solely to users to provide information in support of Voyant Health Ltd. products. No other use of the information provided hereunder is authorized.

Nothing contained herein shall be construed as conferring by implication, estoppel or otherwise any license or right under any patent or trademark of Voyant Health Ltd. or any third party. Except as expressly provided above, nothing contained herein shall be construed as conferring any license or right under any Voyant Health Ltd. or third party copyright.

Limitation of Liability
Information provided on this documents is provided "AS IS" and is provided without warranty of any kind, either express or implied, including, without limitation, warranties of merchantability, fitness for a particular purpose, and non-infringement. Voyant Health Ltd. uses reasonable efforts to include accurate and timely information on this web site and periodically updates the information without notice. However, Voyant Health Ltd. makes no warranties or representations as to the accuracy or completeness of such information, and Voyant Health Ltd. assumes no liability or responsibility for errors or omissions in the content of this documents. Your use of these documents is AT YOUR OWN RISK. Under no circumstances and under no legal theory or provision shall Voyant Health Ltd. be liable to you or any other person for any direct, indirect, special, incidental, exemplary, or consequential damages arising from your access to, or use of, these documents.

Product information is subject to change without notice. Changes, if any, will be incorporated in new editions of publications provided in these documents. Voyant Health Ltd. retains the right to make improvements and/or changes in the products and/or the programs described in the publications and information provided on these documents at any time and without prior notice. Mention of non-Voyant Health Ltd. products or services is for information purposes only and constitutes neither an endorsement nor a recommendation of such products or services.
Third-Party Information

These documents may contain information of parties other than Voyant Health Ltd. Such information is provided for your convenience and reference only. The said information is not under the control of Voyant Health Ltd., and Voyant Health Ltd. is not responsible for the contents of any of such information. The inclusion of this information does not imply any association with their operators or any endorsement of the said third parties by Voyant Health Ltd.

⚠️ Disclaimer

This software is intended as a decision support system for persons who have received appropriate medical training, and should not be used as a sole basis for making clinical decisions pertaining to patient diagnosis, care, or management. All information derived from the software must be clinically reviewed regarding its plausibility before use in treating patients. Any deviation of the application of medical information from the program, other than the original design or intended use there of, is not advised and considered a misuse of the software product. For additional guidance, see published studies.

0344

Authorized representative address:

CEpartner4U B.V.
Esdoornlaan 13
3951 DB Maarn
The Netherlands
Phone: +31.343.442.524
Fax: +31.343.442.162

Catalog Number: MK3U00074 ver G
Table of Contents

About This Guide... viii
Audience ... ix
Contacting Us .. x
Safety Symbols ... xi

Chapter 1, Getting Started with TraumaCad... 1
 What is TraumaCad? .. 1
 TraumaCad Workflow ... 2
 Selecting the Procedure ... 3
 Importing the Digital X-ray ... 3
 Specifying Anatomical Orientation .. 3
 Displaying the Image ... 3
 Calibrating the Image ... 3
 Performing Pre-operative Evaluation and Planning ... 4
 Saving and Archiving .. 4
 Client/Server or Standalone ... 5
 System Requirements .. 6
 Launching TraumaCad .. 7
 Procedures .. 9
 My OrthoWeb Cases .. 10
 My OrthoWeb Account ... 11
 My Local Cases .. 12
 News from Voyant Health .. 13
 Quick Tour of the TraumaCad Interface ... 14
 Menu Bar ... 15
 Toolbar .. 19
 TraumaCad Right-click Menus .. 23
 Grouping Objects ... 24

Chapter 2, Preparing the Image .. 25
 Loading Images from a PACS ... 26
 Finding the Patient .. 26
 Selecting the Patient’s Images .. 27
 Compressing Images ... 28
 Specifying Anatomical Orientation .. 30
 Multiple Views ... 31
Table of Contents

Chapter 4, Measuring the Anatomy .. 71

- **Generic Tools** .. 72
 - Ruler Tool ... 72
 - Circle Tool ... 73
 - Angle Tool ... 73
 - Interline Tool .. 74
 - Line Tool .. 74
 - Free Hand Line Tool ... 75
 - Text Annotations ... 76

- **Auto-Hip Measurements** ... 77

- **Deformity Measurements** ... 80
 - Limb Alignment Analysis ... 80

- **Hip Measurements** ... 94
 - Hip Deformity Analysis ... 95
 - Leg Length Discrepancy Tool ... 100
 - Acetabular Index .. 101
 - VCA Angle of Lequesne ... 102
 - Cup Version ... 103
 - Center of Rotation ... 104

Chapter 3, TraumaCad Pre-operative Procedures 39

- **Building a Kit** .. 42

- **Templating** .. 43
 - Selecting an Implant ... 44
 - Specifying Implant Properties .. 47
 - Positioning an Implant ... 49

- **Trauma Procedures** ... 50
 - Specifying the Anatomical Region ... 51
 - Reducing the Bone Fragments .. 53
 - Special Trauma Template Features ... 56

- **3D Suite (Optional)** ... 61
 - Opening a 3D Image .. 62
 - Adding a 3D Template ... 66

- **Auto-Hip Procedure** ... 69

- **Deformity Procedure** ... 69

Chapter 2, Hip Procedure .. 71

- **Hip Measurements** ... 94
- **Templating** .. 43
- **Deformity Procedure** ... 69
- **Auto-Hip Procedure** ... 69

Calibrating the Image .. 31
- X-ray Scaling ... 32
- Calibration Sphere ... 32
- OrthoMark ... 33
- Calibration Window .. 34
- Calibrating an Image ... 36
Table of Contents

TraumaCad® User’s Guide

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stem Version</td>
<td>105</td>
</tr>
<tr>
<td>Knee Measurements</td>
<td></td>
</tr>
<tr>
<td>Limb Alignment Analysis</td>
<td>106</td>
</tr>
<tr>
<td>Center Line Finder</td>
<td>107</td>
</tr>
<tr>
<td>Simple Line</td>
<td>108</td>
</tr>
<tr>
<td>High Tibial Osteotomy</td>
<td>109</td>
</tr>
<tr>
<td>Tibial Cutting</td>
<td>110</td>
</tr>
<tr>
<td>Joint Line</td>
<td>111</td>
</tr>
<tr>
<td>Pediatric Measurements</td>
<td>112</td>
</tr>
<tr>
<td>Hip Deformity Analysis</td>
<td>112</td>
</tr>
<tr>
<td>Limb Alignment Analysis</td>
<td>117</td>
</tr>
<tr>
<td>Acetabular Index</td>
<td>118</td>
</tr>
<tr>
<td>Reimer’s Index</td>
<td>119</td>
</tr>
<tr>
<td>VCA Angle of Lequesne</td>
<td>120</td>
</tr>
<tr>
<td>Neck Shaft Angle</td>
<td>121</td>
</tr>
<tr>
<td>Head Shaft (Slip) Angle</td>
<td>122</td>
</tr>
<tr>
<td>Articulo-trochanteric Distance</td>
<td>123</td>
</tr>
<tr>
<td>Epiphyseal Index</td>
<td>124</td>
</tr>
<tr>
<td>Tibiofemoral Angle</td>
<td>125</td>
</tr>
<tr>
<td>Metaphyseal-Diaphyseal Angle</td>
<td>126</td>
</tr>
<tr>
<td>Trauma Measurements</td>
<td>127</td>
</tr>
<tr>
<td>Limb Alignment Analysis</td>
<td>127</td>
</tr>
<tr>
<td>Diaphyseal Fracture Angulation</td>
<td>128</td>
</tr>
<tr>
<td>Metaphyseal Fracture Angulation</td>
<td>129</td>
</tr>
<tr>
<td>Center Line Finder</td>
<td>129</td>
</tr>
<tr>
<td>Simple Line</td>
<td>130</td>
</tr>
<tr>
<td>Roof Arc</td>
<td>130</td>
</tr>
<tr>
<td>Joint Arc</td>
<td>131</td>
</tr>
<tr>
<td>Spine Measurements</td>
<td>132</td>
</tr>
<tr>
<td>Vertebrae Labeling</td>
<td>132</td>
</tr>
<tr>
<td>Cobb Angle</td>
<td>135</td>
</tr>
<tr>
<td>Double Cobb Angle</td>
<td>136</td>
</tr>
<tr>
<td>Triple Cobb Angle</td>
<td>137</td>
</tr>
<tr>
<td>Pelvic Radius Angle</td>
<td>137</td>
</tr>
<tr>
<td>Sacral Obliquity</td>
<td>139</td>
</tr>
<tr>
<td>Coronal Balance</td>
<td>140</td>
</tr>
<tr>
<td>Sagittal Balance</td>
<td>141</td>
</tr>
<tr>
<td>Spondylolisthesis</td>
<td>142</td>
</tr>
<tr>
<td>Thoracic Kyphosis Angle</td>
<td>143</td>
</tr>
<tr>
<td>Thoracic Trunk Shift</td>
<td>144</td>
</tr>
<tr>
<td>T1 Tilt Angle</td>
<td>145</td>
</tr>
</tbody>
</table>
Table of Contents

Lumbar Lordosis Angle ... 146
Spine Slip Angle .. 147

Foot and Ankle Tools ... 148
Foot Osteotomies Wizard ... 148
Hallux Valgus Angle ... 154
Hallux Valgus Interphalangeus Angle ... 155
Intermetatarsal Angle ... 156
DMAA Distal Metatarsal Articular Angle 157
PMAA Proximal Metatarsal Articular Angle 158
Talar Tilt ... 159

Upper Limb Measurements .. 160
Center Line Finder ... 160
Simple Line .. 160
Joint Line ... 161

CORA Tools .. 161
Center Line Finder ... 161
Joint Line ... 161

Growth Calculator .. 163

Chapter 5, Reports .. 169
Generating Reports ... 169

Appendix A, Installing TraumaCad ... 173
Installing TraumaCad .. 173
How to Install TraumaCad .. 175

Appendix B, Standalone Usage .. 179
Setting the PACS Configuration (Optional) 180
Importing Images from a CD ... 181
Capturing Images from the Screen .. 182

Appendix C, Managing Implant Templates 183
Importing Implant Templates .. 184
Templates Manager .. 185
Other Templates Manager Options 187
Searching for Templates ... 187
Remove Selected Templates ... 187
Change Templates Folder .. 188

Index ... 189
This guide is intended for surgeons who are performing pre-operative evaluation and planning for orthopedic procedures.

This guide contains the following chapters:

- **Chapter 1, Getting Started with TraumaCad**, page 1, describes the purpose of TraumaCad, its system requirements, how to install it, how to launch it and provides a quick tour through its interface.

- **Chapter 2, Preparing the Image**, page 25, describes how to use TraumaCad to load the required images, specify their anatomical orientation and calibrate the images.

- **Chapter 3, TraumaCad Pre-operative Procedures**, page 39, describes how to use TraumaCad for pre-operative evaluation and planning for a variety of orthopedic procedures.

- **Chapter 4, Measuring the Anatomy**, page 71, describes how to use the various tools provided by TraumaCad to measure the anatomy represented in an image. It also describes how to take anatomical measurements, compare them to normative standards and simulate corrective procedures for limb alignment analysis.

- **Chapter 5, Reports**, page 169, describes how to generate a report.

- **Appendix A, Installing TraumaCad**, page 173, describes how to install TraumaCad for standalone operation.

- **Appendix B, Standalone Usage**, page 179, describes several procedures that may be required in standalone mode.

- **Appendix C, Managing Implant Templates**, page 183, describes how to import and manage implant templates in the TraumaCad system.
This guide is intended for surgeons and other medical personnel who want to perform pre-operative surgical planning and evaluate images.

TraumaCad operates in two modes: standalone mode and web client mode.

Procedures and sections in the guide are marked to indicate whether they apply to standalone mode () or web client mode (). You only need to read those sections relevant to your work mode when using the TraumaCad application.
Contacting Us

International Headquarters
35 Efal Street
Petach-Tikva, 49511
Israel
Telephone +972-3-929-0929
Fax +972-3-923-6413

US Headquarters
5575 Sterrett Place
Suite 250
Columbia MD 21044
USA
Telephone 866-717-0272
Fax 801-881-5239

UK Office
Toll Free 00-800-9290-9290
Fax +44 207 692 7865
info@voyanthealth.com
support@voyanthealth.com
Safety Symbols

The following symbols are used throughout the documentation. Please pay particular attention at specific points in a procedure when one of the following messages appears.

WARNING!
A WARNING! denotes a hazard. It calls attention to a procedure that, if not correctly performed or adhered to, could result in injury or loss of life. Do not proceed beyond a warning note until the indicated conditions are fully understood and met.

NOTE:
Notes provide pertinent information to help obtain optimum performance from the program.

TIP:
This is a tip providing useful suggestions and information.
This page is intentionally left blank.
Chapter 1

Getting Started with TraumaCad

NOTE: Procedures and sections in the guide are marked to indicate whether they apply to standalone mode () or web client mode ().

What is TraumaCad?

TraumaCad is for assisting healthcare professionals in preoperative planning of orthopedic surgery. Clinical judgments and experience are required to properly use the software. TraumaCad allows surgeons to evaluate and manipulate digital images while performing various pre-operative surgical planning and evaluation of images. TraumaCad enables increased productivity and improves patient safety. The program features full PACS integration and an extensive regularly updated library of digital templates from leading manufacturers. TraumaCad provides easy-to-use solutions for various orthopedic subspecialties:

- Hip
- Knee
- Pediatric
- Trauma
- Spine
- Foot and Ankle
- Upper Limb
- 3D Suite
- Auto-Hip
Deformity

TraumaCad Workflow

The following provides a chronological overview of the process of using TraumaCad.

NOTE:
For standalone TraumaCad usage, you must first install the application. See page 173 for details.

- Selecting the Procedure (page 3)
- Importing the Digital X-ray (page 3)
- Specifying Anatomical Orientation (page 3)
- Displaying the Image (page 3)
- Calibrating the Image (page 3)
- Performing Pre-operative Evaluation and Planning (page 4)
- Saving and Archiving (page 4)

NOTE:
Templates are updated automatically. To import a missing template, see page 183.
Selecting the Procedure

The TraumaCad application is procedure-oriented, which means that you must select the relevant surgical or analysis procedure to be performed on the patient as your first step when accessing the application. The procedure you choose determines the specific templates and measurement tools that can be used in the application. See Chapter 3, TraumaCad Pre-operative Procedures, on page 39.

Importing the Digital X-ray

TraumaCad is transparently integrated with the PACS system and enables full access to its patient images and information. TraumaCad provides a variety of options for finding a specific patient of interest. After you have found the patient, you can select the images in which you are interested. See page 26 for details.

Specifying Anatomical Orientation

After an image is displayed, whether it was imported from a PACS system or a CD, you must specify its anatomical orientation. See page 28 for details.

Displaying the Image

TraumaCad supports DICOM and enables you to import and export any PACS file (X-ray, CT or MR) from a central PACS system, a CD or from a local workstation. JPG, scanner or digital camera images can also be imported. See page 25 for details. You can also import images from OrthoWeb, as described in the My OrthoWeb Cases section on page 10.

Calibrating the Image

TraumaCad’s automatic calibration tool facilitates precise calibration to the actual bone size. See page 25 for details.
Performing Pre-operative Evaluation and Planning

TraumaCad provides easy-to-use solutions for various orthopedic subspecialties:

- Hip, page 94
- Knee, page 106
- Pediatric, page 112
- Trauma, page 127
- Spine, page 132
- Foot and Ankle, page 148
- Upper Limb, page 160
- 3D Suite, page 61
- Auto-Hip, page 77
- Deformity, page 80

Saving and Archiving

Once the planning of a procedure is completed, a full report is saved, which includes the image, the implants and the measurements that were marked on it. This report can be stored in the patient’s PACS file, locally, uploaded to OrthoWeb or sent by OrthoFlow.

NOTE:

In addition, TraumaCad provides a series of anatomical measurement tools in manual, semi-automatic and automatic mode. In addition to length, width and diameter, these tools measure leg length discrepancy, Cobb angle, mechanical and anatomic axis measurement, mal-alignment tests and more. These tools can be used on an image at any time. For more information, see page 71.

TraumaCad also provides a Growth Analysis tool, which provides various options for predicting the growth of a particular anatomy in pediatric orthopedics. For more information, see page 163.
Client/Server or Standalone

TraumaCad is installed and runs locally on your computer and interacts with a PACS system. Both a web client (client/server) and a standalone version of TraumaCad are available.

The client/server version is comprised of a server application that is set up by the administrator, and client applications that run on specific computers.

The standalone version runs on a specific computer only and stores all its files, such as its configuration and implant templates, on that specific computer.

These two types of applications operate in a very similar manner and there are only slight differences in functionality, as described below.

Client/Server Functionality

All the functionality described in this guide is available in the client/server version except for those listed below. The features that are not available are performed by the administrator. Some of these administrator features apply to all the TraumaCad applications running in an organization, such as the library of implant templates, and some are user-specific according to the user that logs in to a client:

- There is no need to specify the connection properties between TraumaCad and the PACS system. Therefore, the PACS Configuration option is not applicable in the client version.
- An organization that runs the client/server version is assigned a certain number of licenses, and the quantity of TraumaCad applications that can run simultaneously (concurrent users) is determined by this license.
- The following are handled by the administrator, and the client does not need to perform them:
 - Import Image option
 - Import DICOM Folder option
 - Query button
 - Download Templates option
 - Screen Capture option

Standalone Functionality

All the functionality described in this guide is available in the standalone version.
System Requirements

Hardware
- 1GB RAM or more
- Processor: P4 2.8 GHz or higher
- Hard Drive:
 - Up to 75 MB for the software
 - Up to 2GB for digital templates
- Minimal screen resolution: 1024 x 768
- 64MB graphics card (For 3D Suite)
- Open Internet access (OrthoWeb usage / templates updates)

Software
- Windows XP professional 32bit/64bit or Windows VISTA business 32bit/64bit
 (English should be the default OS language – other languages can coexist)
- Windows XP SP2 / SP3 or Windows VISTA SP1
- MS windows update (all patches & hot fixes available at Microsoft windows update)
- MS .NET Framework version 2.0 and 3.5
- DirectX 9.0 or up
- Internet Explorer 6.0 Service Pack 1 (or above)
- I386 directory from the installation CD
- Acrobat Reader
- VNC, pcAnywhere or MS Terminal (Remote Desktop connection) - recommended for installation and on going support

NOTE:
To install TraumaCad Workstation, you must be logged on as a user with administrative privileges.

Clinical Requirements
To perform accurate templating, the image should be calibrated. Image requirements may differ according to the image source:

- Uncalibrated Images: A metal calibration sphere with a known diameter (typically one inch) must be placed at the bone level prior to taking the image.
- DICOM Images with a Preset Calibration Attribute Acquired from the Modality: There is no need for a physical marker.
Launching TraumaCad

TraumaCad requires an activation key to operate and must be connected to the Web the first time it is launched. A trial activation key is valid for 30 days, after which you can contact your system administrator or Voyant Health sales for a permanent one.

► To launch TraumaCad:

1. Double-click the TraumaCad icon that was installed on your desktop:

 ![TraumaCad Icon]

 If this is not the first time that TraumaCad is launched on this computer, the main window is displayed, as shown on page 8.

 For first time activation, enter the required information in the window below and click **OK**:

 ![Activation Window]

 Enter key (provided on CD or sent by Voyant Health)

2. After entering a valid activation key, the **Online Activation** button becomes active. Enter information about yourself in the displayed window and click **OK**.
3 In the window that opens, click OK to display the opening window of the application, in which you select the procedure for analysis or planning.

![TraumaCad User Interface]

NOTE:

3D is a module that can be purchased separately. Contact the Voyant Health Sales Department for more information.

4 The following describes the options provided in this first window:

- **Procedures**, page 9
- **My OrthoWeb Cases**, page 10
- **My OrthoWeb Account**, page 11
- **My Local Cases**, page 12
- **News from Voyant Health**, page 13
Procedures

The TraumaCad application is procedure-oriented. This means that you must select the relevant surgical or analysis procedure to be performed on the patient as your first step when accessing the application. Only the relevant templates and measurements for the procedure chosen are displayed.

NOTE:

3D is a module that can be purchased separately. Contact the Voyant Health Sales Department for more information.

Click the icon corresponding to the surgical or analysis procedure to be performed.

The procedures are divided into automatic procedures and manual procedures, as follows:

Automatic Procedures

- AUTO-HIP
 Page 69
- DEFORMITY
 Page 69

After you select a procedure the TraumaCad main window opens, as shown on page 8.

NOTE:

Future versions of TraumaCad will provide more automatic procedures.

Manual Procedures

- HIP
 Page 94
- KNEE
 Page 106
- PEDIATRIC
 Page 112
- TRAUMA
 Page 127
My OrthoWeb Cases

Click the button on the main splash screen to access the cases that you saved in OrthoWeb, as shown below:
You can access your account using the **My OrthoWeb Account** option, as described below.

My OrthoWeb Account

OrthoWeb is a web-based environment where the medical staff can upload and store their cases in a highly-secured location.

Doctors can manage cases including images, TraumaCad pre-operative data (for example, measurements, required implants and so on) and any other files into a private account and share them with their colleagues online.

You can register through the following site: www.orthoweb.com.
My Local Cases

Click the **My Local Cases** button to access the cases that you saved locally on your computer or on a disk-on-key in a folder called **My TraumaCad Cases**, as shown below:

![Image of My Local Cases button and folder structure]

The **My TraumaCad Cases** folder contains a sub-folder for each case that it contains, as shown below:

![Image of My TraumaCad Cases folder contents]

Saving and managing a local case is the same as saving and managing any type of local folder and file. You can use the **Save**, **Save As** and **Open** options or double-click on the case file with the **.tcc** extension to open it in TraumaCad.

The following describes the sub-folders provided for each case:

- **Original Images Folder**: Contains the original images, in jpg format. This is the original image before templating using TraumaCad.
- **Templated Images Folder**: Contains the templated images, in jpg format. This is the source image with the template that was added using TraumaCad.
- **Resources Folder**: You can ignore this folder.
• **TraumaCad Case (tec):** This file has the same name as the case. It is the actual locally-stored case with the file extension of .tec. This file is ciphered and password-protected. This file type is associated in Windows with TraumaCad and automatically opens in the TraumaCad interface.

• **HTML Report:** A report is created automatically for each case. It provides a summary of the pre-planning, showing all source images, templated images and providing details about the template, its position and all measurements, as shown below:

![HTML Report Example](image)

News from Voyant Health

Voyant Health-related news is provided in this area from an RSS (Really Simple Syndication) newsfeed.
Quick Tour of the TraumaCad Interface

This section provides a brief overview of the features of the TraumaCad application, and describes its main window, menu bar and toolbar. The main window displays a list of patients and their images. It also serves as the main work area in which you can measure anatomy, select an appropriate implant or plan for an operation.

The main window contains the following areas:

- **Menu Bar**, page 15
- **Toolbar**, page 19
- **Find Patients and Images**, page 26
- **Image Compression**, page 28
- **Import Images**, page 25
- **Status Bar**: Indicates the status of the application

TIP:

All TraumaCad options are accessible from both the toolbar and the menu bar.
Menu Bar

The following describes the menu options available in the TraumaCad menu bar, and when relevant, provides a reference to the section of this guide that provides more information.

File Menu

- **New Case**: Opens a new case study.
- **Open Case**: Opens a local case that was stored on your computer or on a disk-on-key in a folder called **My TraumaCad Cases**. Locally-stored cases have a file extension of `.tcc`.

 Note: This file type is associated in Windows with TraumaCad and automatically opens in the TraumaCad interface if you double-click.
- **Save Case**: Saving a case enables you to store all its images, templates, measurements and case information and later reopen it in TraumaCad. This option opens a window in which you can select to save this case by choosing any of the following options:
 - Upload it to Orthoweb.
 - Commit it to PACS.
 - Save it locally in the **My TraumaCad Cases** folder.
 - Save it to an external device drive that you select, such as a memory stick.
 - Send it to OrthoFlow, which is another TraumaCad application that provides quick and easy distribution of digital images in Orthopedic clinics with an automatic login to PACS. A window opens enabling you to select to which room of the clinic to send the image.
- **Save Case As**: Enables you to save the case in another place in the computer with any name. The case remains a `.tcc` Traumcad file.
- **Send by OrthoFlow**: Sends this case to OrthoFlow, which is another application by Voyant Health that provides quick and easy distribution of digital images in clinics with an automatic login to PACS. A window opens enabling you to select to which room of the clinic to send the image.
- **Download Templates**: Downloads templates of implants from Voyant Health’s global repository to your computer.

- **Search for Images**: Searches for and adds an image while performing a procedure.

- **Change Procedure**: Changes the surgical or analysis procedure for a given patient after your initial procedure selection for this patient. See page 9.

- **Import Image**: Imports a single image file. See page 181.

- **Import DICOM Folder**: Imports a folder of DICOM images to your local cache. See page 181.

- **Export to DICOM Folder**: Saves the DICOM image on the local PC as a DICOM folder.

- **Export to Excel**: Exports the measurements to an Excel sheet. This option is especially suited for research, since each measurement is added as a row in the Excel sheet file that you specify. This enables you to perform numerous measurements, even on different images, and to store them in the same Excel sheet, with each measurement as a row.

- **Delete Cache**: Clears the cache of images on your local computer.

- **Screen Capture**: Captures any image that is displayed on the screen into TraumaCad. See page 182.

- **Settings**: Defines settings for the TraumaCad application.

- **PACS Configuration**: Configures the connection properties between TraumaCad and the PACS system. See page 180.

- **Language**: Chooses the language for displaying the TraumaCad interface.

- **Exit**: Closes the application.
Image Menu

- **Rot. 90° CW (clockwise):** Rotates the image 90° clockwise.
- **Rot. 90° CCW (counter-clockwise):** Rotates the image 90° counter-clockwise.
- **Rot. 180°:** Rotates the image 180°.
- **Vertical Flip:** Flips the image vertically.
- **Horizontal Flip:** Flips the image horizontally.
- **Invert Image:** Reverses the areas of black/white on the image.
- **Group:** Groups multiple objects so they can be moved together as a single object. See page 24 for details.
- **UnGroup:** Removes objects from a group.
- **Copy to Clipboard:** Copies the displayed image to the clipboard, including the implants, textual annotations and measurement tools that you added using TraumaCad. From there you can paste it to any other application.

Basic Tools Menu

- **Move:** Moves the selected object by dragging the mouse.
- **Pan:** Moves the image itself.
- **Zoom:** Zooms in (enlarges) or zooms out (shrinks) the image view.
- **Window Level:** Enhances the visible distinction between contrasting tissue regions by manipulating the brightness and contrast.
- **Restore Original W/L:** Returns the image’s contrast and brightness settings to their original values.
- **Fragments Submenu:** See pages 54 through 55 for more details.
Measurement Tools Menu

- **Calibrate Image**: Calibrates the selected images. See page 31 for details.
- **Text Annotation**: Adds a textual annotation to be shown on the image.
- **Basic Measurements Submenu**: See pages 72 through 74 for details.
- **Hip Submenu**: See page 94 for details.
- **Knee Submenu**: See page 106 for details.
- **Pediatric Submenu**: See page 112 for details.
- **Trauma Submenu**: See page 127 for details.
- **Spine Submenu**: See page 132 for details.
- **Foot and Ankle Submenu**: See page 148 for details.
- **CORA Tools Submenu**: See page 161 for details.
- **Launch Growth Calculator**: Opens the Growth Calculator. See page 163 for details.

Window Menu

- **Fit to Screen**: Returns to the original image size after zooming in.
- **Layout**: Specifies the layout of more than one image on the screen.
- **Magnifying Glass**: Displays an enlarged view of the area around the mouse cursor in a separate window. Magnification can be adjusted as needed.
- **Navigation Window**: Draws a box in the Navigation window to select the specific area of the image to be displayed in the main area.

Help Menu

- **Go Online**: Displays Voyant Health’s website.
- **Check for Update**: Checks if there is an update available for the application.
- **Request a Template**: Accesses the Voyant Health website to request a template.
- **User Guide**: Displays the online help of this User Guide.
- **About**: Presents license and version information for TraumaCad.
Toolbar

The following provides a brief description of each of the tools in the TraumaCad toolbar, and when relevant, provides a reference to the section of this guide that provides more information.

Search for Images: Search for and adds an image while in the midst of performing a procedure.

New Case: When you launch TraumaCad, a new case study is opened. Only one case can be open at a time. A case study may have multiple images open, and each may have implants and measurements drawn on it using TraumaCad. Opening a new case study removes all the displayed images from view. Before opening a new case study, make sure to generate the required report and/or to commit the image back to the PACS system.

Change Procedure: Changes the surgical or analysis procedure for a given patient after your initial procedure selection for this patient. See page 8 for details.

Open Case: Opens a local case that was stored on your computer or on a disk-on-key in a folder called My TraumaCad Cases. Locally stored cases have a file extension of .tcc.

NOTE:

This file type is associated in Windows with TraumaCad and automatically opens in the TraumaCad interface if you double-click.

Save Case: Saving a case enables you to store all its images, templates, measurements and case information and later reopen it in TraumaCad. This option opens a window in which you can select to save this case by choosing any of the following options:

- Upload it to OrthoWeb.
- Use JPEG Lossy Compression: When this option is selected, the DICOM files in the .tcc file sent to OrthoWeb are compressed using JPEG Lossy compression.
- Commit it to PACS.
- Save it locally in the My TraumaCad Cases folder. You can change the Case Default Location of the local folder using File menu ➔ Settings ➔ Case.
- Save it to an external device drive that you select, such as a memory stick.
• Send it to OrthoFlow, which is another TraumaCad application that provides quick and easy distribution of digital images in the Orthopedic clinics with an automatic login to PACS. A window opens enabling you to select to which room of the clinic to send the image.

• **Annotation**: Selects the positioning and orientation of the text on the saved image.
Send by OrthoFlow: Sends this case to OrthoFlow, which is another Voyant Health application that provides quick and easy distribution of digital images in the Orthopedic clinics with an automatic login to PACS. A window opens enabling you to select to which room of the clinic to send the image, as shown below:

![OrthoFlow window](image)

Calibrate Image: Calibrates the selected images. See page 31 for details.

Move: Moves an object in the image by dragging the mouse. Click this tool, click on an object that was drawn using TraumaCad on the image, such as an implant, a fragment or textual annotation, hold down the mouse button and then move the mouse to move the object.

Pan: Moves the image itself. Click this tool, click on the image and hold down the mouse button. Then move the mouse to move the image. You can also use the mouse wheel to pan the image by simply holding the wheel down and then moving the mouse to move the image.

Zoom: Zooms in (enlarges) or zooms out (shrinks) the image view. Click this tool, click on the image, hold down the mouse button and then drag the mouse up to zoom in or down to zoom out. You can also use the mouse wheel to zoom by rolling it upwards to zoom in and downwards to zoom out.
Window Level: Enhances the visible distinction between contrasting tissue regions by manipulating the brightness and contrast. Position the cursor on the image, and click this tool. Then, click on the image and drag the mouse left or right to change the contrast, and up or down to change the brightness.

Undo and Redo: Undoes and redoes the last action in TraumaCad.

Ruler Tool: Measures a section of the image. See page 72 for details.

Circle Tool: Measures the diameter of any round object. See page 73 for details.

Angle Tool: Measures an angle. See page 73 for details.

Interline Angle: Measures the angle between two lines on an image. See page 74 for details.

Line: Draws a line on an image. See page 74 for details.

Free Hand Line: Enables you to draw a freehand line on the image. See page 75 for details.

Text Annotation Tool: Adds a textual annotation to be shown on the image. See page 76 for details.

Delete Selected Object: Deletes a selected measurement tool or implant that you have added onto the image using TraumaCad. Click on the object that you wish to delete and then click on this tool.

Transpose View: Transposes the orientation of an implant between AP and lateral views.

Copy implant: Duplicates a selected implant.

Flip Implant: Flips the selected implant or fragment left or right.

Invert Image: Reverses the areas of black/white on the image.

Fit to Screen: Returns to the original image size after zooming in.

Define Fragment: Draws an outline around a fragment to be moved in the image by clicking around its edges. See page 53 for details.
Duplicate Fragment: Duplicates a fragment you cut out onto the current image or onto another image. You may decide to duplicate a fragment and then flip it in order to compare a fragment from one limb to another limb.

Help Mode: Displays the online help of this User Guide.

TraumaCad Right-click Menus

The right-click menus that display in TraumaCad vary, depending on the type of object selected. The following figures show examples of the menus that display when selecting measurements, fragments and templates, respectively.

The tools available in these menus are described on pages 15 and 19.

NOTE:
The Color option is available on the templates and measurements right-click menus. This option enables you to change the color of the template/measurement tool on the screen. Select this option to open a window in which you select the desired color for the template/measurement tool.
Grouping Objects

TraumaCad enables you to group various types of objects together into a group, including measurements, fragments and templates. Once grouped, the objects comprising the group can be moved and rotated as a single object.

TraumaCad also provides special options for grouping templates. See page 57 for more details.

► To group TraumaCad objects:

1. Using your mouse, hold down the mouse button and draw a selection box around the objects to be grouped. A yellow bounding box surrounds the objects you selected. Alternatively, you can select multiple objects while holding down the Shift key.

2. Right-click on one of the objects within the bounding box and select Group. The objects are now grouped and can be moved and rotated as a single object. To rotate the group, click on the handle at the top of the bounding box and pull in the direction in which you want to rotate the group.

Grouped items remain grouped until you ungroup them by using the right-click menu or the Image menu.
Chapter 2

Preparing the Image

NOTE:
Procedures and sections in the guide are marked to indicate whether they apply to standalone mode () or web client mode ().

TraumaCad supports DICOM and enables you to import (and export) any PACS file (X-ray, CT or MR) from a central PACS system, a CD or from a local workstation. JPG, scanner or digital camera images can also be imported, and any image can be captured from the screen and used in TraumaCad. TraumaCad then provides an automatic feature to ensure accurate calibration to bone size.

After an image has been prepared in TraumaCad, you can start the required surgical planning procedure. See page 39 for details.

Step 1: Displaying the Image

If TraumaCad is integrated into your PACS, then all you need to do to access an image is to display it in the PACS, and then select the TraumaCad option.

The following options are provided for importing images:

- Loading Images from a PACS, page 26
- Importing Images from a CD, page 181
- Capturing Images from the Screen, page 182

Step 2: Specifying Anatomical Orientation

This step must be performed on all the images with which you want to work in TraumaCad. See page 30 for details.

Step 3: Calibrating the Image

This step may be performed on images with which you want to work in TraumaCad. See page 31 for details.
Loading Images from a PACS

Finding the Patient

TraumaCad is transparently integrated with the PACS system and enables full access to its patient images and information. TraumaCad provides a variety of options for finding a specific patient of interest. After you have found the patient, you can select the images in which you are interested.

► To find patient, perform any one of the following:

- When working in web client mode, the window automatically shows the selected patient row and the image(s) for this patient as a thumbnail(s).
- When working in standalone mode, follow the steps below to find a patient.

1. Click the Query button.
2. Sort the list by clicking on the required attribute.
3. Select the patient of interest by clicking on the required row.

Typically, this list is sorted by Last Name, then First Name and then Study Date.
You can scroll down in this list or sort the listed patients by clicking on the dropdown arrow for a column (at the top of the list), and then selecting the sort criterion to be used. You can perform any of the following options:

- Select the From and/or To checkboxes and specify the range of dates of interest. Click to see all the images within this date range.
- Enter/select all or some of the patient’s information in the Patient ID, Patient Name, Accession and Modality fields and click . You can also enter part of the patient’s ID or name.
- Select the Today, Yesterday, Last 7 Days, Last 14 Days or Last 30 Days option and then click to see all the images within this date range.
- Click to clear the fields previously entered.

NOTE:
Select File ➔ Delete Cache to clear the cache of images on your local computer.

Selecting the Patient’s Images

Once you have found the patient in which you are interested, you can select the relevant images, an entire series or an entire study to be viewed. Double-click the relevant row, or click the plus sign to drill down and see the series in a study and then again to see the images in a series. Double-click an image to retrieve it from PACS and display it in the TraumaCad window.

The following diagram shows how to drill down and select a specific image in a series of a study.

1. Click on a study to display the series that it contains.
2. Click on a series to display the images that it contains.
3. Double-click on an image to select it. A thumbnail of this image is displayed.

NOTE:
Typically, you select an entire study for a patient.
Compressing Images

When working in client/server mode, you can compress images when retrieving them for their faster retrieval time. By default, images are not compressed when working in this mode.

NOTE:

Compression is disabled and cannot be performed when working in TraumaCad standalone mode.

When you want to compress an image, you must specify both the type of compression to be performed and the image quality factor to be used when importing the image. The latter is designated by moving the **Selected Compression** slider to the required position in a range from 1 to 100, where 1 represents the lowest image quality and 100 represents the maximum image quality. You specify the type of compression by selecting the appropriate value in the **Selected Compression** dropdown list, as follows:

- **Not selected:** Images are not compressed during their retrieval. This is the default.
- **JPEG Lossy**
- **JPEG 2000 Lossy**
- **JPEG Lossless**
- **JPEG 2000 Lossless**
The image is retrieved from the PACS according to the compression chosen.

The type of compression used is indicated at the bottom-left of the image.

NOTE:

In some cases, compression cannot be performed, such as when working with 16-bit images. If you specify to compress an image, but the compression process fails, the image is retrieved without compression being applied.
Specifying Anatomical Orientation

After the images in which you are interested have been loaded from the PACS or imported from a CD or your local computer, each of them are displayed in the sidebar on the left of the window. Two examples are shown below, including a Lateral image (top image) and an AP image (bottom image). Select the AP or LAT and Left or Right radio buttons to indicate the anatomical orientation of an image and then click . The Image Calibration window is then automatically displayed.

You can scroll up and down among the images that you have selected, if you have selected more than two, and you can minimize the images of a specific series by clicking .
Multiple Views

Up to four images can be displayed simultaneously in the main work area. The active image has a red border. An unlimited number of image thumbnails can be displayed in the sidebar on the left of the window.

To make an image the active image, click the image in the main work area.

Calibrating the Image

To use an image for quantitative measurements, the image must be calibrated to the actual bone size. The calibration status of the image appears in the lower-right corner of the image.
One of the most beneficial features of TraumaCad is its ability to automatically calibrate an image to the actual bone size by calibrating the image to a marker that is imaged with the patient.

There are two options for calibrating an image:

- **Automatically**, using either an OrthoMark device or a known-size ball marker. For either of these methods, once you open the image, its calibration is detected automatically. In this case, click **Accept** to accept the calibration.

- **Manually**: For this purpose, Voyant Health provides a spherical metal X-ray marker with a diameter of one inch. The metal ball should be placed on the same plane (meaning the same height or level) as the bone while performing the X-ray. TraumaCad can then automatically detect this marker in an image and calibrate the image to the actual bone size according to it.

X-ray Scaling

Direct linear measurements cannot be taken from plain X-rays because of the unknown magnification factor inherent in the X-ray-taking process.

There are two ways of determining the magnification factor, as follows:

- To know the distance from the source of the X-rays to the object and the distance from the source to the X-ray plate
- To include an object of known size or a radio opaque ruler in the plane of interest

Calibration Sphere

Voyant Health’s spherical metal X-ray marker scaling device is of the second type mentioned above. This device is intended to be used to provide a scale for plain X-rays, CR and DR (such as those commonly used in orthopedics). The scaling sphere should be placed in the same plane as the bone. The bone and sphere should therefore be the same distance from the X-ray plate and the X-ray source.

When an X-ray image is scaled using a ruler or simple object, it is impossible to verify whether the scale was placed in the correct plane at the time of acquisition. The advantage of the sphere is that it is three-dimensional and its diameter is constant from any angle that the X-ray is taken.

NOTE:

Measurements performed on uncalibrated images are in pixel units, while in calibrated images they are in millimeters.
OrthoMark

The OrthoMark Reference marker is an exact 25.4 mm or 1 inch. The marker should be positioned at bone level at the same distance from the detector plate (film plane), whether it be CR or DR. The following two figures illustrate the positioning process.

With the marker at the same distance as the bone, the size is automatically calculated by the software used for choosing prosthetic sizes.

TIP:

For automatic calibration to be enabled, you must use Orthomark

Contact your Voyant Health sales representative if you need to obtain it.
When you access an image, it opens initially with an Image Calibration window, which provides various options for calibrating the image. After calibration is completed, as described in this section, click \[\text{Accept}\] or \[\text{Skip calibration}\] and proceed to Chapter 3, TraumaCad Pre-operative Procedures on page 39.

The Image Calibration window appears as follows, depending on whether the spherical metal X-ray marker is found or not:

The following describes what happens when the marker is found. If no marker is detected, then refer to the Calibrating the Image section on page 31 for instructions.

If the marker is found, the message Metal Ball found where shown is displayed and the following appears on the marker in the image:

Click [Accept] to accept this calibration.
The selected image is then displayed in the work area, as shown below:

![Image of TraumaCad software with selected image in work area]

NOTE:
If the *Remove Marker after calibration* option is checked in the Calibration window, then the measurements on the marker are removed after calibration and the marker appears as it was before calibration, for example, as follows:

![Image of marker before and after calibration]

Now, click and proceed to *Chapter 3, TraumaCad Pre-operative Procedures* on page 39.

Even if the metal ball is found, you may decide to manually or semi-automatically calibrate the image, as described on page 36.

If you decide not to calibrate the image, then click and proceed to *Chapter 3, TraumaCad Pre-operative Procedures* on page 39.

The following describes the various options for calibrating an image.
Calibrating an Image

If no marker is detected, you have three options, as follows:

- To skip calibration by clicking [Skip calibration].
- To manually indicate the position of the marker to which to calibrate, as described below.
- To manually resize the image by entering a percentage in the Oversize field (for example 15%) and clicking [Set].

Manually Indicating the Marker in the Image

To manually indicate the position of the marker you have three options:

To click on the spherical metal X-ray marker

This is a semi-automatic option that detects the entire spherical marker, once you click anywhere inside it in the image. To do so, click [Select another point] and then click inside the marker on the image.

To use the Ruler tool

Use the Ruler tool to measure a section of the image whose size is known to you.

Click [Use Ruler Tool for Calibration] to display the following window:
Draw a line to indicate the size of the marker in the image. The size of the line is displayed on the image and changes as you draw and resize the line:

The size of the line is also shown in the Marking Size field. If you know that the marker’s actual size is 100 mm, then make sure that the Marking Size field shows that value. You can manually change it to adjust the size of the line in the image.

When the line exactly covers the extent of the marker in the image, click Accept.

To use the Circle tool

Click Use Circle Tool for Calibration to display the following window:
Click on the marker in the image. A circle marker is automatically drawn:

Drag this circle to exactly cover the marker.

You can resize the circle by manually changing the value in the **Marking Size** field. If you know that the marker’s actual size is one inch, then make sure that the **Marking Size** field shows that value.

You can also easily set the size of the circle to exactly cover the marker’s image, by manually positioning (dragging) each of the three anchors (red plus signs) of the circle onto the outer rim of the marker’s image.

The diameter of the circle is displayed on the image and changes as you draw and resize the circle. When the circle exactly covers the extent of the marker in the image, click [Accept].

Copying the Calibration

The Copy Calibration feature enables you to copy calibration data from one series to another within the same study. This feature is useful when a study includes multiple series of images.

► **To copy calibration data between series within a study:**

1. Open the first series of images within a study.
2. Open the next series of images within the same study to which you want to apply the calibration settings from the first series.
3. Click the [Copy Calibration] button.

NOTE:

You should not use the Copy Calibration feature to copy calibration data between studies.
Chapter 3

TraumaCad Pre-operative Procedures

NOTE:
Procedures and sections in the guide are marked to indicate whether they apply to standalone mode (änner) or web client mode (änner).

After you perform the three steps described beginning on page 25, you are ready to perform the relevant procedure for the selected part of the anatomy. To begin this process, select the image to be used for the procedure by doing one of the following:

- **If there is a single thumbnail in the sidebar area:** Specify the anatomical orientation of the image and then either double-click the thumbnail or click.

- **If there are multiple thumbnails in the sidebar area:** Select the image to be used as the active image for the procedure by clicking it in the main area and then clicking Next.

1. Click here to select the image to be used.
2. Click Next.
Both of these actions open a window such as the one below:

![Image of a window with tabs]

This window consists of a series of tabs on the left and the main area on the right that displays an image(s).

The following tabs are shown in this window:

- **Templates**: Identifies the required implant. For some of procedures, this tab displays by default. See page 42 for more details. Four sub-tabs are displayed under the Templates tab, as follows:
 - **Implants**: Specifies the implant product family for templates of a given type by a specific manufacturer. See page 44 for details.
 - **Kits**: Enables you to define your own kits of templates that you can add to an image together. See page 42 for details.
 - **Recently Used**: Lists the last 20 templates used in this procedure.
 - **Favorites**: Saves templates to a favorites list, thereby providing quick access to them.
- **Measurement Tools:** Measures the actual anatomy in the image using a variety of tools provided by TraumaCad. For more information, refer to Chapter 4, Measuring the Anatomy on page 71.

 ![Measurement Tools](image)

 NOTE:
 All measurement wizards contain an **Undo** button, which enables you to cancel your last action and return to the previous step in the wizard. This button is only available in TraumaCad measurement wizards that have multiple steps.
 All measurement wizards also contain the **Back To Measurements List** button, which enables you to exit the wizard and return to the list of measurement tools.

- **Report:** Creates a report containing textual information describing the patient, the measurements, the surgical procedure to be performed and/or the implant to be used and any text that the surgeon chooses to add. See page 169 for more details.
Building a Kit

This section describes how to build a kit that is comprised of the templates that you select. After you build a kit of templates, you can add it to the image. As an example, the following shows how to create a kit of a specific cup and a specific stem:

1. Add the desired cup template and stem template to an image.
2. Drag the cursor around them to select them both.
3. Right-click on this selection and select the Create a Kit option from the menu, as shown below:

The following window is displayed:
4 Enter a name and description for this kit and click OK. This new kit then appears in the Kits tab, as shown below:

<table>
<thead>
<tr>
<th>Implants</th>
<th>Kits</th>
<th>Recently Used</th>
<th>Favorites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charney Kit</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Image: Kit Name: Charney Kit, Implants in Kit: Charney Cups, Charney Stems]

You can hover over this kit to display information about the templates that it comprises.

5 To add this kit to the image, simply double-click on it in the Kits tab. All the templates in the kit are then added to the image.

Templating

TraumaCad optimizes templating for joint replacement procedures, trauma and so on, and is ideal for complex reconstructions and osteotomies, as well as for standard primary replacements. Surgeons can evaluate the post-operative anatomical alignment of various surgical scenarios (cutting, displacing, implanting) to create an optimal surgical plan. Incorporated into the patient file, this plan helps ensure the success of the procedure, while reducing operating time. TraumaCad offers a large and easily accessible template library. This library is constantly updated automatically through the server or manually in the standalone version.

Refer to the following sections for a description of the main steps of these procedures:

- **Selecting an Implant**, page 44
- **Specifying Implant Properties**, page 47
- **Positioning an Implant**, page 49
Selecting an Implant

The process of using TraumaCad for each of the procedures (hip, knee, trauma, spine, foot and ankle, and upper limb) is similar. Of course, the implant library differs for different anatomical regions. A window such as the following is shown when you select templates:

At this point you may want to use any of the variety of measurement tools provided by TraumaCad to measure the anatomical region of the patient, as described in Chapter 4, Measuring the Anatomy on page 71.

The process of identifying the required implant is also referred to as Templating. During this process, you first select the appropriate implant according to the available inventory, size and a variety of other properties. You then position it on the image on the appropriate anatomy.
NOTE:

If there are no templates for this procedure, the window contains a button, as shown below:

![Download Templates button](image)

Click this button to download the required template. For more information, see page 185.

► To select the appropriate implant(s):

1. In the Templates tab, select the manufacturer of the implant from the Manufacturer field. Selecting a manufacturer determines the types of implants that are available for selection in the Type of Implant field.

2. Select the type of the implant in the Type of Implant field.

3. [Optional] You can search for a specific template using the Look for field.

To do so, enter your search text in the Look for text box and click ![search icon]. The list of templates matching your search criterion is displayed, as shown in step 4 below. This search function is procedure-specific, meaning that only those implants that match your search criterion for your current procedure are displayed in the results list. For example, if your current procedure is a Hip procedure, only matching templates for a Hip procedure are displayed. When you use this search option, you can leave the Manufacturer and Type of Implant fields blank.

To specify that the search is not procedure-specific, check the Search the entire Templates Library checkbox.
Click the **Look for** dropdown arrow to display a history of past searches. You can select an item in the dropdown list, as appropriate.

4. Select the implant product family in the **Implants** list. Many implant products may be available for selection. Scroll right or left using the scroll bar under this list to see them all.

5. Click on the arrow next to the implant product to see a preview image of the implant:

 ![Implant preview](image)

 - **To save an implant in the Favorites tab:**
 - Select the implant product family in the **Implants** list. While holding down the mouse button, drag and drop the implant onto the **Favorites** tab. You can also add implants to the **Favorites** tab from the **Recently Used** tab. Simply select the required implant in this tab and drag and drop it onto the **Favorites** tab.
Specifying Implant Properties

Once you have selected the required implant, you can position it on the image and specify more properties of the implant to suit the surgical procedure, such as its size, offset and number of attachments. You may require more than a single implant for a specific surgical procedure.

To specify implant properties:

1. Double-click on the implant’s name in the Implants list on the left. This places the implant in the center of the image.

Or

Drag the implant from the list on the left onto the image.

A selection of properties appears on the left, as shown above.

NOTE:
You can click the yellow rectangle surrounding the implant and then drag and drop to move the implant on the image.
Specify the properties of the implant to suit the surgical procedure, such as:

- The size of the implant in the **Size** field.
- The length of the implant in the **Length** field.
- The angle between the pieces of the implant in the **Offset** field.
- The neck length of the implant attachments in the **Attachment** field.

These properties differ according to the implant that is selected.

You may find it useful to filter an implant’s properties. Properties in TraumaCad are synchronized by default. This means that only valid combinations of property values can be used for an implant.

Filtering, or locking, a property automatically displays only those property values that match the property used as your filter criterion.

To filter (lock) a property, double-click the property in the property list. To stop filtering by this property (unlock), double-click the property again. The figures below show examples when the **Calcar_Replacement** and **Lateralization** properties are locked and unlocked.

The figure on the right has filtered (locked) the **Calcar_Replacement** and **Lateralization** properties. Note that in this figure, the **Length** and **Size** properties now display only those values that create a valid combination with the specific **Calcar_Replacement** and **Lateralization** properties.

The **lock symbol** indicates that a property is locked.
3 While selecting the appropriate implant for total hip replacement, take note of the projected post-operative parameters Offset changes and Leg length changes on the bottom-left of the window. If both a stem and a cup implant are placed on the image, these indicate the anatomical changes that will occur as a result of the procedure.

<table>
<thead>
<tr>
<th>Hip Parameter Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offset changes: 4 mm</td>
</tr>
<tr>
<td>Leg length changes: 7 mm</td>
</tr>
</tbody>
</table>

4 If at any point you want to place another implant on the image, click Add Implant.

5 If at any point you want to delete the selected implant from the image, simply select it and press the Delete key or the Delete Selected Object tool.

Positioning an Implant

You should position the implant on the image according to surgical considerations. A number of options are provided to facilitate implant positioning on the image.

► To move an implant:
 - Make sure that the Move tool is selected, and then click on the implant and drag it to the required position. You can use the arrow keys to move the implant in small increments.

► To rotate an implant:
 - The selected implant is indicated by its light (highlighted color) and a rotation handle:

 ![Rotation Handle](image)

 Drag the rotation handle to the left, right, up or down to pivot the implant around its hinge.
You can also flip an implant using the Flip Implant tool, and change it from AP to LAT and vice versa by using the Transpose View tool.

The selected implant automatically appears in the new orientation. You should position it on the image.

Trauma Procedures

TraumaCad is designed to meet the needs of the trauma environment. TraumaCad enables you to define fracture or bone fragments, and to move, rotate and copy fragments on the image to reconstruct on the healthy side and accurately restore the anatomy on images prior to templating.

- **Specifying the Anatomical Region** (for a trauma procedure), page 51.
- **Defining and Reducing the Bone Fragments**, page 53. You may try different options for reducing the fragments and then select the optimal one.
- **Special Trauma Template Features**, page 56. Some TraumaCad trauma templates have special features not available with other templates, such as the ability to bend plate templates at marked points and determine screw type properties.
Specifying the Anatomical Region

After you select [Select], the following window is displayed, in which you specify the anatomical region for the procedure:
To specifying an anatomical region of the body:

1. Move the mouse over each relevant area of the body on the skeletal image on the left. As you do so, it is highlighted in red. This action filters out templates that do not apply.

2. Click on the relevant part of the body to open a window such as the one shown on page 40, which provides access to Templates, Measurement Tools and Reports.

NOTE: Click the Skip Anatomical Region Selection button to disable template filtering.
Reducing the Bone Fragments

The main procedure window displays the implants used in the image if there are any.

Several tools and menu options are provided to define and affect the bone fragments in the image: **Define Fragments**, **Lasso Tool** (accessed from the menu bar) and **Duplicate Fragments**.
Defining Fragments

► To define fragments:

1. Select the Define Fragments tool in the toolbar or select Basic Tools ➔ Fragments ➔ Define Fragment in the menu bar. Make a series of clicks along the outline of the fragment to be moved.

2. Close the outline drawing of the fragment by double-clicking. You now have a closed shape that you can drag to a new position:
You can now reposition or adjust the selection of the fragment as required using any of the following options:

- Press the **Delete** key to delete the selected outline.
- The dot in the center of the fragment that you have traced is the pivot point. If you drag the handle, the fragment rotates around it. You can also drag this pivot point to a new position and then rotate the fragment by dragging its handle.
- You can flip this fragment using the **Flip Implant** tool.
- You can duplicate this fragment using the **Duplicate Fragment** tool.
- You can copy the fragment by selecting **Image ➔ Copy to Clipboard** in the menu bar. To paste the fragment, simply click on the image and press **Ctrl+V** on your keyboard.
- Delete the fragment using the **Delete Selected Object** tool.
- Return a manipulated fragment to its original location by clicking and deleting it, and then clicking on its original location and clicking **Delete** again.
- Send the fragment forward or backward on the image by selecting **Basic Tools ➔ Fragments ➔ Fragment Bring to Front** or **Basic Tools ➔ Fragments ➔ Fragment Send to Back** in the menu bar, respectively.

Lasso Fragments

Lassoing fragments means to simply draw a line around the area of the image that contains the fragments to be moved.

To lasso fragments:

1. Select **Basic Tools ➔ Fragments ➔ Lasso Tool** in the menu bar.
2. Click and hold down the mouse button and drag the mouse around the area to be moved. A line will be drawn as you move the mouse:
After the fracture is reduced, you can add implants for fixation. For details describing how to perform this procedure, refer to the sections listed below:

- Selecting an Implant, page 44
- Specifying Implant Properties, page 47
- Positioning an Implant, page 49

Special Trauma Template Features

Some TraumaCad trauma templates have special features not available to other templates, including:

- Plate bending capabilities, below
- Grouping capabilities, page 57
- Handling of screws in Locking Compression Plates, page 59

Plate Bending

Some plates used in trauma procedures can be bent to better conform to the curvature of the bone. Such plates display a series of red points on the template on the image. The plate can be bent at each of these points, as needed.

For example, the figures below show examples of such a plate before and after bending:

![Before Bending](image1.png) ![After Bending](image2.png)

To bend a plate template:

- Click on a red point on the plate template on the image, and while holding down the mouse button, pull to bend the plate to the required position. Repeat for other points on the plate, as needed.
Grouping Templates

Some templates in the TraumaCad system are grouped by default. For such grouped templates, the items contained with the group are surrounded by a yellow box, which indicates the boundaries of the group. This box contains a handle at the top, which can be used to move or rotate the entire group on the image.

For example, the figures below show a grouped template that contains both a plate and screws. For a grouped template, you can manipulate the properties of each element within the group individually. The figures below show the same template before and after resizing the plate. Note that the plate has been elongated in the figure on the right during resizing.

![Plate Before Resizing](image1.png) ![Plate After Resizing](image2.png)

You can select any item within a grouped template. The selected item is highlighted in dark green. You can only change the size of an item when it is highlighted.

![Selected Item](image3.png)

All items comprising a grouped template can be moved and rotated together as a single group using the yellow handle at the top of the group.

You can also add multiple templates to an image and then group them to create a single group.
To create a template group:

1. Add two or more templates to an image.

2. Click on one of the templates to select it, and while holding down the Shift key, click on another template to select it. You can add an unlimited number of items to a single template group.

3. Right-click on one of the templates you selected and select **Group**. The templates are now grouped. Grouped items remain grouped until you physically ungroup them. In the example below, two templates – a head template and a stem template – have been grouped. Note that the yellow bounding box completely surrounds both templates, indicating that both are part of a single group.

NOTES:
Templates grouped in this fashion are only grouped in this image, and not within the TraumaCad template library.
Handling Screws in Locking Compression Plates

Locking Compression Plates (LCPs) can use two different types of screws, as follows:

- **Locked screws**: Screws used in *locked* position are set at an angle to the template and this angle cannot be changed. Screws of this type have a threaded head. For such screws, it is important that the hole in the plate into which they are inserted be exactly the size of the screw.

- **Unlocked screws**: A screw used in *unlocked* position can be rotated (axial movement), which means that you can change its angle on the image, but its connection point remains constant.

In LCP plates, the smaller holes in the plate are for locked screws and the larger holes are for unlocked screws.

Locked and unlocked screws appear differently on the image, as follows:
In LCP templates, several options are available for handling the screws within the template. You can:

- Lock a screw.
- Unlock a screw.
- Remove a screw.
- Remove all screws.

To use one of these options, simply right-click a screw in the template and select the relevant option in the right-click menu.

If you remove a screw from a template, you can reattach it by right-clicking the hole where the screw should be affixed and selecting Re-attach Screw in the right-click menu.
3D Suite (Optional)

The TraumaCad 3D module enables you to view images, such as CTs and MRIs, in three dimensions using Multi-Planar Reconstruction (MPR) or Maximum Intensity Projection (MIP). The images are shown in Axial, Coronal, Sagittal and Oblique views. In addition, the user can add three-dimensional templates to the image in order to do preoperative planning.

This section describes how to use the optional 3D module in TraumaCad.
Opening a 3D Image

Select the 3D procedure in the Procedure Selection window (shown on the previous page).

Click on a CT or MR study in the patient list. The included series are opened in the thumbnail view.

Choose Left or Right and then click on the plus sign to open the series in the main view.

NOTE:
Only series in Axial orientation can be displayed in 3D mode.
Navigating on MPR Images

The series opened is shown initially with Axial, Coronal and Sagittal views. The yellow lines on the images represent the localizer lines, which help show the location of the image in relation to the other views.

To change the location of each slice, scroll in the active window using the mouse wheel or click and drag with the mouse button on the yellow localizer lines.

The lower-right view initially shows the Axial image. This view can be changed to either Coronal or Sagittal view using the respective button, or to any required Oblique view using the aqua localizer lines.
To change the orientation of this view, click on the red holding points and rotate the aqua localizer line to the preferred Oblique view.

NOTE:

The orientation chosen to be shown in the lower-right view has its aqua localizer lines shown in the two orthogonal views.
Changing the View Type to MIP

To change the bottom-right image to an MIP view, select the MIP radio button.

The MIP view can be shown in Axial, Coronal or Sagittal orientations only.
Adding a 3D Template

The procedure for adding a 3D template to the image is identical to that for adding a 2D template. For more information, see page 43.

For MPR views, the outline of the template is shown according to the slice location and orientation. For MIP views, the template is shown as a complete projection of the implant. The implant can be shown in grayscale on the MIP view.

When the 3D suite option is available, the following two buttons appear, as shown above:

- **Locate implant**: Scrolls all the views to the implant location, meaning that this button is shown in all the views.
- **Launch AQnet**: Opens the 3D view inside the Terarecon viewer. This button is only displayed when Terarecon Integration is defined.
The implant is also shown in a separate navigation window, in order to allow easier orientation and rotation of the implant.

NOTE:
Moving or rotating the implant on one of the views affects its position and orientation on all other views.
Using the Implant Navigation Window

The *Implant Navigation* window shows the implant according to the orientation of the currently active view. To change the orientation, click and drag with the mouse button in the *Implant Navigation* window. The changes are reflected in the main views.

When several 3D templates are placed on the images, the last selected template is shown in the *Implant Navigation* window.

This window is resizable and can be enlarged by dragging the corner using the mouse.
Auto-Hip Procedure

Digital preplanning for hip replacement surgery is a common orthopedic surgery procedure used to estimate implant size, determine the post-operative geometrical relationship between the femur and the acetabulum, the resulting leg length and offset change, and predict any geometrical mismatch and difficulty pre-operatively.

Auto-hip Procedure is a software module for the automatic marking of specific points within an anterior-posterior pelvis X-ray image. The program then positions the desired implant according to predefined orthopedic rules, thereby enabling fully automatic hip preplanning.

A set of anatomic landmarks on a pelvic AP X-ray is defined in a way that determines the size of the femoral stem and its expected stable position in the femoral canal. Points of interest are the femur midline and diameter of its channel, greater trochanters tips, lesser trochanters tips and bottom tangent line to the visible ischial tuberoses curves.

For details describing how to perform this procedure, refer to the *Auto-Hip Measurements* section on page 77.

Deformity Procedure

Preplanning for lower limb deformity correction surgery is the art of describing the properties of the deformation and the means of its correction.

The user must draw a model assessing the transfer of load from the point of which it is applied to the limb – usually at the center of the femoral head, through its geometrical relations with the major joints and to the center of the ankle, where it is transferred to the ground.

The purpose of defining the axes of load is to be able to define the centers of any anatomic deformation along the pass of bony structures, calculate its magnitude and suggest the best means of correction.

The outcome of the procedure is a plan describing where a bone should be cut and the angle it needs to rotate around a chosen pivot, in order to re-establish the correct length and axis for load transfer.

For details describing how to perform this procedure, refer to the *Deformity Measurements* section on page 80.
This page is intentionally left blank.
Chapter 4

Measuring the Anatomy

NOTE:
Procedures and sections in the guide are marked to indicate whether they apply to standalone mode or web client mode.

After you have calibrated the image you may want to measure the actual anatomy in the image using a variety of tools provided by TraumaCad.

Most of TraumaCad’s measurement tools can be accessed from both the Measurement Tools menu and from the Measurement Tools tab. The most frequently used tools can also be accessed from the toolbar and by right-clicking on the image.

All tools are described in the sections that follow, and are organized by TraumaCad procedure. They can be used digitally in the same manner that they are used for physical measurements.

NOTES:
To obtain quantitative measurements, the image must first be calibrated, as described in the Calibrating the Image section on page 31.

This chapter also describes the Growth Calculator on page 163, which predicts the growth of a particular anatomy in pediatric orthopedics.
Generic Tools

TraumaCad includes several generic tools that can be used to supplement procedure-specific tools:

- **Ruler tool**, below
- **Circle tool**, page 73
- **Angle tool**, page 73
- **Interline tool**, page 74
- **Line tool**, page 74
- **Free Hand Line tool**, page 75
- **Text Annotations**, page 76

Ruler Tool

The **Ruler** tool measures selected portions of an image either in pixels (for uncalibrated images) or millimeters (for calibrated images).

► **To use the Ruler Tool:**

1. After loading an image, click the **Ruler** tool on the toolbar.

2. Left-click, hold the mouse button on the image where you want to start measuring, and drag the mouse without releasing the mouse button until the end of the section to be measured.

3. Release the mouse. The measurement appears in pixels or millimeters below the measurement bar.
Circle Tool

Use the **Circle** tool to measure the diameter of objects in the image.

▶ **To use the Circle Tool:**

1. Click in the toolbar.
2. Click on the image in the work area. The **Circle** tool appears on the image.
3. Left-click and hold the mouse button inside the circle and drag it to the desired position.

 ![Circle Tool Image]

4. Click and drag on each of the three crosses in turn to adjust the size of the circle.
5. The diameter measurement (if calibrated in millimeters) appears in the lower-half of the circle.

Angle Tool

The **Angle** tool measures the angle between two areas or lines.

▶ **To use the Angle Tool:**

1. Click in the toolbar.

 ![Angle Tool Image]

2. Click on the image in the work area. The **Angle** tool is displayed.
3. Drag the edges of the tool to the edges of the sections to be measured. The measurement appears in degrees next to the angle.
Interline Tool

Use the Interline tool to measure the angle between two lines on an image. This tool is particularly useful when working with minor angles on an image.

► **To use the Interline Tool:**

1. Click ➡️ in the toolbar.
2. Click on the image in the work area. The Interline tool appears on the image.
3. Left-click and hold the mouse button and drag each line to the required position. Use the red pluses as needed to position the lines.

![Interline Tool Example](image)

The angle between the two lines is displayed next to the dotted line connecting the two Interline tool lines on the image.

Line Tool

Use the Line tool to draw a line on the image. No measurements are associated with this line.

► **To use the Line Tool:**

1. Click ➡️ in the toolbar.
2. Hold the mouse button and draw a line on the image, without releasing the button. A line is drawn on the image, as shown below. The drawn line has no length measurement. To draw a line of a specific length, use the Ruler tool.

![Line Tool Example](image)
Free Hand Line Tool

Use the **Free Hand Line** tool to draw a freehand line on the image. No measurements are associated with this line.

► **To use the Free Hand Line Tool:**

1. Click in the toolbar.

2. Click on the image and hold down the mouse button while you draw a free hand line on the image in any shape, without releasing the button. A line is drawn on the image, as shown below:
Text Annotations

Use the **Text Annotations** tool to add free text to the basic measurements. When text is added to the image, a line shows the connection between the text and the part of the image to which it applies. You can drag this text away if it is obstructing the view. The line will lengthen and still point to the part of the image to which the text applies.

► **To add text annotations to an image:**

1. Click **Text Annotation** in the toolbar and then click on the image.

 Or

 Double-click on a measurement in the image. The following window is displayed:

 ![Enter Text Annotation String](image)

 2. Enter your text in the text box.

 3. Optionally, change the text color, font, anchor color and so on by clicking **File ➔ TraumaCad Settings ➔ Text** and specifying the required setting.

 4. Click **OK** to save your settings. All data is saved with the image on the PACS and on reports.
Auto-Hip Measurements

To use the Auto-Hip tool:

1. Select the Auto-Hip procedure.
2. In the Templates tab, select the relevant templates, which are then displayed in the Implants tab, as shown below:
3 Drag and drop or double-click on a template in the **Implants** tab to add it to the image. For example, as shown below:

This tool automatically places the stem in the femoral channel according to the selected side (right or left). This tool also automatically defines an image fragment that contains the femur. The Leg Length Discrepancy tool, described on page 100, is also automatically added to the image.

4 Even though the tool automatically selects and places the stem, you may want to fine tune its position by dragging the fragment or adjusting the size of the stem in the **Size** field in the **Implants** tab.

5 Select the required cup template and cup size and add it to the image.
6 Right-click on the stem and select the **Attach To Cup** option. The stem and fragment are then automatically attached to the cup so that the attachment point of the stem is positioned on top of the attachment point of the cup. For example, as shown below:

![Image of stem and cup attachment](image)

NOTE:
When the cup and stem are positioned automatically, the fragment moves accordingly, as shown above.

7 A default attachment point is automatically selected. If required, you can select a different attachment point in the **Templates** tab. The **Offset changes** and **Leg length changes** appear automatically at the bottom of the **Templates** tab. The pre-reduction and post-reduction measurements appear on the bottom of the left-hand pane.

8 The difference between leg lengths can be measured automatically by the LLD Tool or manually by checking the **Use Clinically Measured LLD** checkbox and entering the value.
Deformity Measurements

Currently, there is only one automatic deformity measurement tool, which is called Limb Alignment Analysis automatic deformity measurement, as described below.

Limb Alignment Analysis

The Limb Alignment Analysis tool enables orthopedic surgeons to measure and display the anatomic and mechanic axes of deformed limbs. The common joint angles are automatically calculated and compared to normative standards and are used to simulate corrective procedures. The anatomical measurements can be unilateral or bilateral. Measurements and evaluations can be integrated into patient files for an easy transition to digital radiology.

► To perform limb alignment analysis:

1. Select the Limb Alignment Analysis option in the Measurement Tools tab.
2. Use the wizard to mark anatomical landmarks on the image for limb alignment analysis, as described below.
3. Use the CORA tools, as described on page 85.
4. You can simulate osteotomies and implant fixation, as described on page 109.
5. You have the option to use TraumaCad’s comprehensive Growth Calculator tool, as described on page 163.
Marking Anatomical Points

Select the **Limb Alignment Analysis** measurement tool in the **Measurement Tools** tab.

For an AP image, specify whether you want to produce unilateral vs. bilateral measurements and calculations by selecting the appropriate radio button from the dropdown list.

The wizard guides you through the process of marking each of the anatomical reference points required for performing the automatic leg alignment analysis.
However, if for any reason you want to skip that stage and perform osteotomy simulation in a predetermined location, mark only two reference points and click the **Skip Wizard** button in the **Measurements** tab, as shown below:

![Image showing Skip Wizard button and measurements](image)

This shortens the process and only instructs you to mark two points.

NOTE:

If the image only shows part of the leg, for example when the femoral head is not in the image and you are using the **Skip Wizard** option, then you must guess the line to the femoral head’s position at the top of the image using the CORA tools, as described on page 85.

At any stage after marking the anatomy using the wizard, you can click on the **Show Limb Alignment Analysis** checkbox under the table to hide/unhide the anatomical measurements on the image.

Unilateral

The following unilateral measurements are calculated in an AP image:

- **mLPFA**: Mechanical Lateral Proximal Femoral Angle
- **mLDFA**: Mechanical Lateral Distal Femoral Angle
- **mMPTA**: Mechanical Medial Proximal Tibial Angle
- **mLDTA**: Mechanical Lateral Distal Tibial Angle
- **JLCA**: Juxta-articular Line Conversion Angle
- **Length (mm)**
- **MAD**: Mechanical Axis Deviation
- **Femur**: Total length of femur segment
- **Tibia**: Total length of tibia segment

A wizard is displayed in the **Measurement Tools** tab that guides you through the process of identifying anatomical markers by clicking on them in the image.

A magnifying glass opens automatically that enlarges the relevant area to help you position the points.

Follow the steps in the wizard and mark the relevant points on the image corresponding to each step.

The following shows an example of the image after the seventh point has been marked:
After you mark the eighth point the window appears as follows:

You can now fine tune the position of the measurement points by zooming in the image and dragging them. For example, as shown below:
CORA Tools

The Center of Rotation of Angulation (CORA) is the intersection of the proximal segment’s axis and the distal segment’s axis. The angle created is the magnitude of the deformity in the frontal plane.

After you perform the limb alignment analysis, as described above, the CORA measurements are shown in the Measurements tab for each stage, as shown below:

In the table, normal values appear green and abnormal values appear red. You can now use the CORA tools to establish where to cut.

The CORA can be found by establishing either the anatomical or the mechanical axis of each bone. Different tools are provided for each of these options.

Typically, one tool is placed on the proximal segment and one on the distal. The CORA is found at the intersection between the two tools. For multiple deformities, recalculate above and below each deformity, either on the same bone or on multiple bones, such as the femur and tibia. For each CORA, you must use either two mechanical tools or two anatomical tools.

The illustrations in the Measurements tab guide you through the process for using these tools.
To use the CORA tools:

1. In the **Measurements** tab, hover with the mouse over an anatomic part of a leg to display the relevant CORA tools for that leg part, such as the femur, as shown below:

 ![Before Mouse Over](image1.png) ![After Mouse Over](image2.png)

2. Click on the tool in the picture to place it on the image, as shown below:

 ![Placement](image3.png)

NOTE:

We recommend that at this stage you uncheck the **Show Limb Alignment Analysis** checkbox so that the limb alignment lines are not shown, thus enabling you to concentrate on finding the CORA.
3 Hover with the mouse over the other part of the same leg, such as the tibia, as shown below:

![Image of tibia](image1)

4 Click on the tool in the picture to place it on the image, as shown below:

![Image of tool placement](image2)
5 Zoom in the image to better see where the lines intersect, as shown below:

The CORA and the osteotomy lines are indicated at the intersection between the tools and it shows its bisectoral angle, which is 9% in this example. Both lines appear on top of each other by default.

You can move the osteotomy line to where you plan to do the cut. By default, it is positioned on the CORA.

The following shows the lines moved away from each other, as an example, so that you can see them more clearly.

6 In the Measurements tab - Wedge section, select either the Open, Neutral or Close option to specify whether you want an open, neutral or closed wedge between the femur and the tibia. You can also right-click on the osteotomy line and select the Rotation Axis (ACA) ➔ User Defined option, and then the wedge point can be manually moved to any location.
7 At this point, you can add another CORA by clicking the **Add CORA** button. Up to four CORA points can be added to an image. See more information on page 92.

8 Click the **Finish and Cut** button. Fragments of the image are then automatically created around the osteotomy line, one on the top and one on the bottom, as shown below:

![Image showing the process of adding CORA points and cutting fragments around an osteotomy line.]

9 If you want to automatically align the leg, select either the **Full Alignment** option or the **Rotation Only** option in the **Measurements** tab. Full alignment performs both translation and rotation.
To automatically align the leg, click the **Auto Alignment** button in the **Measurements** tab. The image fragments of the leg are then automatically aligned, as shown below:

The new mechanical angles of the axes are shown in the **Post** column of the **Measurements** tab, as shown below:
The angle and width of the wedge is indicated as follows:

NOTE:

The **Undo Cut** button returns the image as it was before the **Finish and Cut** button was clicked.

10 At any stage you can manually align the femur and tibia fragments by clicking on the fragments and moving them as required.

11 Check the values that appear in the **Measurements** tab. Normal values appear green and abnormal values appear red.
To perform multiple osteotomies, you can add another CORA by clicking the **Add CORA** button. After you add another CORA, it appears as a tab in the **Measurements** tab, as shown below:

Up to four CORAs can be added.

The following options are provided when you right-click on the CORA:

- **Delete CORA**: Deletes the selected CORA from the image.
- **Disable Osteotomy**: Hides the osteotomy line in the image, but leaves the CORA.
- **Hide/Show CORA Lines:** Hides/shows the CORA lines in the image.
- **Rotation Axis (ACA):** After the level of osteotomy is defined, the type of wedge can be selected. An open vs. closed wedge, neutral (through the CORA) or manually positioned pivot can be selected for the moving fragment.
- **Reuse Line:** Automatically creates another CORA line (for example CORA 2) with the same definitions, which you can then modify.
- **Group:** Groups multiple objects so they can be moved together as a single object.
- **UnGroup:** Removes objects from a group.
- **Color:** Enables you to specify the color of the tools in the image.

Select the **Reports** tab to generate a report, as described on page 169.

The report shows all relevant information, such as the pre- and post-measurements results, original image and the image after preparation.
Hip Measurements

The following hip measurements can be made using TraumaCad measurements tools:

- Hip Deformity Analysis, page 95
- Leg Length Discrepancy Tool, page 100
- Acetabular Index, page 101
- VCA Angle of Lequesne, page 102
- Cup Version, page 103
- Center of Rotation, page 104
- Stem Version, page 105

NOTE:
After you have added a stem and a cup, you can right-click on the stem and select the Attach To Cup option to automatically attach them together so that their attachment points are positioned on top of each other. A default attachment point is automatically selected, but you can modify it as required.
Hip Deformity Analysis

Follow the step-by-step instructions of the wizard. In the wizard, you mark the specified anatomical locations in order to measure the important angles of hip deformity.

► To use the Hip Deformity Analysis tool:

1. Select the **Hip Deformity Analysis** option in the **Measurement Tools** tab:
A window such as the following appears:

The Magnifying Glass tool is opened to help fine tune and to ensure that your markers are located in the correct, exact position.

The Hip Deformity Analysis measurement tool is a wizard consisting of 10 steps.

NOTE:

Click the **Back To Measurements List** button to exit the wizard and return to the list of measurement tools. This button is available in all measurement tool wizards.
2 Follow the steps in the wizard and mark the relevant points on the image corresponding to each step. After completing step 9, the window appears, as shown below:

3 Enter the last (tenth) measurement.

4 Click **OK** to close the message box. The window now appears as shown below:
Note that the calculated measurements are displayed in a table at the top of the Measurement Tools tab. From this window, you can also display three calculated measurements on the image by clicking the associated checkbox:

- **Sharp Angle**: Measured from a pelvic horizontal at the teardrop’s height to the superolateral acetabular margin (the lateral rim). This measures the inclination of the acetabulum after fusion of the triradiate cartilage. Select the Show sharp angle checkbox to display this measurement.

- **Central Edge Angle**: Measured from a line that passes through the femoral head center, which is perpendicular to the pelvic horizontal line, to a line that passes from the center of the femoral head to the lateral rim. This measures the acetabular dysplasia. Select the Show central edge angle checkbox to display this measurement.
- **Reimer's Index** (the hip migration percentage): Vertical lines are drawn through the edges of the femoral head and the lateral rim of the acetabulum. The index is calculated by dividing the uncovered part of the head by the entire width of the head. This measures the acetabular coverage of the femoral head. Select the **Show Reimer's index** checkbox to display this measurement.
Leg Length Discrepancy Tool

The Leg Length Discrepancy measurement tool enables you to measure leg length discrepancy.

A tangent line is drawn by choosing two points at the most inferior points on the ischial tuberosities. From this reference line, two vertical lines should be drawn as identical anatomical landmarks on each proximal femur (the center of the lesser trochanter, top of the greater trochanter and so on).

▸ **To use the Leg Length Discrepancy tool:**

1. Select the **Leg Length Discrepancy** option in the **Measurement Tools** tab or select **Measurement Tools ➤ Hip ➤ Leg Length Discrepancy**. The tool appears on the image:

![Image of the tool](image_url)

2. Using the red markers, adjust the tool to the reference points in order to measure the leg length discrepancy, meaning the ischial tuberosity and the center of the lesser trochanter.

The text below the horizontal line indicates the discrepancy between the right and left side and the distance between the two points. If there is no discrepancy, the number 0 is shown.
Acetabular Index

The angle of inclination of the ossified acetabular roof is measured on an AP radiograph of the pelvis. This is regarded as an estimate of acetabular development.

The most commonly used method for measuring the angle is Caffey’s. This involves drawing a horizontal line joining the superior margins of the radiolucent triradiate cartilages. Another line is then drawn from the superolateral margin of the ossified acetabulum to the superolateral margin of the triradiate cartilage.

In the neonate, the angle of intersection is normally less than 30°, and by two years of age, the angle is normally less than 20°.

To use the Acetabular Index tool:

1. Select the Acetabular Index option in the Measurement Tools tab or select Measurement Tools ➔ Hip ➔ Acetabular Index. The tool appears on the image:

 ![Acetabular Index tool](image)

2. Using the red markers, adjust the tool to the reference points shown in the diagram in the Measurement Tools tab.
VCA Angle of Lequesne

The anterior center-edge (VCA) angle quantifies the anterior coverage of the femoral head. Angles less than 20° are considered abnormal.

The VCA angle is calculated from a false-profile radiological view of the pelvis. The patient stands at an angle of 65° oblique to the X-ray beam, with the foot on the affected side parallel to the X-ray cassette. A vertical line through the center of the femoral head subtends the VCA angle by connecting with a second line through the center of the hip and the foremost aspect of the acetabulum.

► To access the VCA Angle of Lequesne tool:
 - Select the VCA Angle of Lequesne option in the Measurement Tools tab or select Measurement Tools ➔ Hip ➔ VCA Angle of Lequesne. The tool appears on the image, as shown below:
Cup Version

When the acetabular component of a total hip replacement is viewed at an angle, it projects as an ellipse. This projection can be mathematically proven to follow the general formula of an ellipse, and translated to ante/retroversion.

A horizontal reference line is drawn on the pelvis (between the ischial tuberosities, teardrops and so on) and three red markers are placed on the edge of the cup. The projection of the ellipse is then translated into ante/retroversion of the cup.

The image has to be a true AP pelvic image. Otherwise, the measured ante/retroversion will be miscalculated.

► To access the Cup Version tool:

- Select the Cup Version option in the Measurement Tools tab or select Measurement Tools ➔ Hip ➔ Cup Version. The tool appears on the image, as shown below:
Center of Rotation

The Center of Rotation measurement tool helps you to find the approximate center of rotation of the injured acetabulum by locating the center of rotation of the contralateral hip. A horizontal line is placed on the pelvis between two teardrops. You then adjust a circle on the acetabulum of the healthy hip and the tool places a matching circle on the injured hip.

► To access the Center of Rotation tool:

- Select the Center of Rotation option in the Measurement Tools tab or select Measurement Tools ➔ Hip ➔ Center Of Rotation. The tool appears on the image, as shown below:

After the Center of Rotation Tool has been placed on the image and adjusted to the correct location, you can browse to the Templates tab and select the Cup templates. If you double-click on a Cup template, it is automatically placed in the correct location with the correct size on the image.
Stem Version

When the femoral component of a total hip replacement is ante/retroverted, the projected neck-shaft angle changes accordingly. The new projected neck-shaft angle can be mathematically translated to ante/retroversion of the stem.

First define the neck shaft angle of the selected stem from the dropdown list then, a center-line finder is placed on the femoral stem, two red markers are placed on the femoral neck and three red markers are placed on the edges of the implanted head. The projection of the neck-shaft angle is then translated into the ante/retroversion of the stem.

The image must be a true AP pelvic one with neutral rotation of the hip joint. Otherwise, the measured ante/retroversion will be miscalculated.

► **To access the Stem Version tool:**

- Select the Stem Version option in the Measurement Tools tab or select Measurement Tools ➔ Hip ➔ Stem Version. The tool appears on the image, as shown below:
Knee Measurements

The following knee measurements can be made using TraumaCad measurements tools:

- **Limb Alignment Analysis**, below
- **Center Line Finder**, page 107
- **Simple Line**, page 108
- **High Tibial Osteotomy**, page 109
- **Tibial Cutting**, page 110
- **Joint Line**, page 111

Limb Alignment Analysis

Knee limb alignment analysis enables orthopedic surgeons to take unilateral or bilateral anatomical measurements, compare them to normative standards and to simulate corrective procedures. Easy-to-use wizards help surgeons produce a wide range of anatomical measurements.

The steps for using this tool are the same as those described in the *Limb Alignment Analysis* section on page 80. Consult this section and its subsections for more details.

► **To access the Knee Limb Alignment Analysis tool:**

- Select the **Limb Alignment Analysis** option in the *Measurement Tools* tab. The tool appears on the image.
Center Line Finder

The Center Line Finder measurement tool is used to locate the center line of long bones. After adjusting the four points to the edges of the bone, the center line is displayed.

► To access the Center Line Finder tool:

- Select the Center Line Finder option in the Measurement Tools tab or select Measurement Tools ➔ Knee ➔ Center Line Finder. The tool appears on the image, as shown below:
Simple Line

Using this tool, a line is displayed on the image that can be manipulated. If the line crosses a second line, such as a Center line or Joint line, the angle between the lines is calculated.

► **To access the Simple Line tool:**

- Select the **Simple Line** option in the **Measurement Tools** tab or select **Measurement Tools ➔ Knee ➔ Simple Line**. The tool appears on the image, as shown below:
High Tibial Osteotomy

This measurement tool is used to measure the correction angle of a High Tibial Osteotomy (HTO), which is the angle between a line that is drawn from the center of the femur to the 62% coordinate of the knee, and a line from the 62% coordinate to the center of the tibiotalar joint.

► To access the High Tibial Osteotomy tool:

- Select the High Tibial Osteotomy option in the Measurement Tools tab or select Measurement Tools ➔ Knee ➔ High Tibial Osteotomy. The tool appears on the image, as shown below. Place the circle around the femoral head, the middle line on the tibial plateau and the distal line on the tibial plafond.
Tibial Cutting

The Tibial Cutting measurement tool measures the amount of bone to be cut at the medial and lateral compartments of the knee in a total knee replacement.

A center line finder is placed on the tibia. A line perpendicular to the center line is drawn proximally and should be placed at the location of the tibial cutting. Two rulers are located at the edges of the tibial cutting line and should be adjusted to the tibial articular surfaces.

► To access the Tibial Cutting tool:

- Select the Tibial Cutting option in the Measurement Tools tab or select Measurement Tools ➔ Knee ➔ Tibial Cutting. The tool appears on the image, as shown below:

![Image of Tibial Cutting tool](image)

After the Tibial Cutting Tool has been placed on the image and adjusted to the correct location, you can browse to the Templates tab and select a Tibial template. If you double-click on a Tibial template, it is automatically placed in the correct location with the correct size on the image. If you then double-click on a Femoral template, it is automatically placed in the correct location with the correct size on the image.
Joint Line

The Joint Line measurement tool enables you to select in advance, the inclination, location and orientation of the Joint line for various measurements, such as deformity evaluation, joint replacement, preoperative planning and so on.

► **To access the Joint Line tool:**

- Select the **Joint Line** option in the **Measurement Tools** tab or select **Measurement Tools ➔ Knee ➔ Joint Line**. The tool appears on the image, as shown below:

You can adjust the desired angle, its orientation (up-down), direction (left-right) and the ratio between the two limbs of the joint line. See page 161 for more details.
Pediatric Measurements

The following pediatric measurements can be made using TraumaCad measurements tools:

- Hip Deformity Analysis, below
- Limb Alignment Analysis, page 117
- Acetabular Index, page 118
- Reimer’s Index, page 119
- VCA Angle of Lequesne, page 120
- Neck Shaft Angle, page 121
- Head Shaft (Slip) Angle, page 122
- Articulotrochanteric Distance, page 123
- Epiphyseal Index, page 124
- Tibiofemoral Angle, page 125
- Metaphyseal-Diaphyseal Angle, page 126

Hip Deformity Analysis

When using this measurement tool, first select the module that fits the patient’s bone age by the ossification stage of the femoral head. The options are:

- Fused Triradiate Cartilage
- Full/Partly Ossified Femoral Head
- Non-Ossified Femoral Head
To use the Hip Deformity Analysis tool for pediatric measurements:

1 Select the Hip Deformity Analysis option in the Measurement Tools tab, as shown below:
Select the appropriate module in the dropdown list. A window such as the following appears:

The Hip Deformity Analysis measurement tool is a wizard consisting of 10 steps.

NOTE:

Click the Back To Measurements List button to exit the wizard and return to the list of measurement tools. This button is available in all measurement tool wizards.
3 Follow the steps in the wizard and mark the relevant points on the image corresponding to each step.

A magnifying glass opens automatically that enlarges the relevant area to help you position the points.

After completing step 9, a window appears as shown below:

4 Enter the last (tenth) measurement.
Click **OK** to close the message box. The window now appears as shown below:

Note that the calculated measurements are displayed in the table at the top of the **Measurement Tools** tab.

From this window, you can also display three calculated measurements on the image, as follows:

- **Hilgenreiner Angle:** The angle of inclination of the ossified acetabular roof is measured on an AP radiograph of the pelvis. This is regarded as an estimate of acetabular development. The most commonly used method for measuring the angle is Caffey’s. This involves drawing a horizontal line joining the superior margins of the radiolucent triradiate cartilages. Another line is then drawn from the superolateral margin of the ossified acetabulum to the superolateral margin of the triradiate cartilage. In the neonate, the angle of intersection is normally less than 30°, and by two years of age, the angle is normally less than 20°. Select the **Show Hilgenreiner Angle** checkbox to display this measurement.

- **Central Edge Angle:** This angle is measured from a line that passes through the femoral head center and is perpendicular to the pelvic horizontal line, to a line that passes from the center of the femoral head to the lateral rim. It measures the acetabular dysplasia. Select the **Show Central Edge Angle** checkbox to display this measurement.

- **Reimer's Index (the hip migration percentage):** Vertical lines are drawn through the edges of the femoral head and the lateral rim of the acetabulum. The index is calculated by dividing the uncovered part of the head by the entire width of the head, which measures the acetabular coverage of the femoral head. Select the **Show Reimer’s Index** checkbox to display this measurement.
Limb Alignment Analysis

Pediatric limb alignment analysis enables orthopedic surgeons to take unilateral or bilateral anatomical measurements, compare them to normative standards and to simulate corrective procedures. Easy-to-use wizards help surgeons produce a wide range of anatomical measurements. Each measurement is automatically compared to the normal parameters published in the literature and to the contralateral limb in the bilateral module, providing instant evaluations of patient anatomy. Measurements and evaluations integrate into patient files for an easy transition to digital radiology.

The steps for using this tool are the same as those described in the *Limb Alignment Analysis* section on page 80. Consult this section and its subsections for more details.

► **To access the pediatric Limb Alignment Analysis tool:**
- Select the *Limb Alignment Analysis* option in the *Measurement Tools* tab. The tool appears on the image.
Acetabular Index

The angle of inclination of the ossified acetabular roof is measured on an AP radiograph of the pelvis. This is regarded as an estimate of acetabular development.

The most commonly used method for measuring the angle is Caffey’s. This involves drawing a horizontal line joining the superior margins of the radiolucent triradiate cartilages. Another line is then drawn from the superolateral margin of the ossified acetabulum to the superolateral margin of the triradiate cartilage.

In the neonate, the angle of intersection is normally less than 30°, and by two years of age the angle is normally less than 20°.

► To access the pediatric Acetabular Index tool:
- Select the Acetabular Index option in the Measurement Tools tab or select Measurement Tools ➔ Pediatric ➔ Acetabular Index. The tool appears on the image, as shown below:
Reimer's Index

The Reimer’s Index measures the hip migration percentage. A circle is adjusted to the ossified femoral head. The vertical line is then placed continuous with the lateral rim of the acetabulum. The index is calculated by dividing the lateral part of the circle by the diameter of the circle. This measures the acetabular coverage of the femoral head.

▶ **To access the Reimer’s Index tool:**

- Select the **Reimer’s Index** option in the **Measurement Tools** tab or select **Measurement Tools ➔ Pediatric ➔ Reimer’s Index**. The tool appears on the image, as shown below:
VCA Angle of Lequesne

The anterior center-edge (VCA) angle quantifies the anterior coverage of the femoral head. Angles of less than 20° are considered abnormal.

The VCA angle is calculated from a false-profile radiological view of the pelvis. The patient stands at an angle of 65° oblique to the X-ray beam, with the foot on the affected side parallel to the X-ray cassette. A vertical line through the center of the femoral head subtends the VCA angle by connecting with a second line through the center of the hip and the foremost aspect of the acetabulum.

► **To access the pediatric VCA Angle of Lequesne tool:**

- Select the **VCA Angle of Lequesne** option in the **Measurement Tools** tab or select **Measurement Tools ➔ Pediatric ➔ VCA Angle of Lequesne**. The tool appears on the image, as shown below:
Neck Shaft Angle

Hip deformity can be evaluated by measuring the angle between the center of the shaft and the center of the neck of the femur.

The normal femoral neck-shaft angle in children changes with age, being approximately 150 at birth and gradually reducing to approach the adult value of 130. It is important that the radiograph is taken with the patient correctly positioned with the leg held in a neutral position and the patellae facing forward, as external rotation of the leg increases and internal rotation decreases the projected neck-shaft angle.

To access the Neck Shaft Angle tool:

- Select the Neck Shaft Angle option in the Measurement Tools tab or select Measurement Tools ➔ Pediatric ➔ Neck Shaft Angle. The tool appears on the image, as shown below:
Head Shaft (Slip) Angle

The head shaft (slip) angle of Southwick has been used to characterize slip severity in slipped capital femoral epiphysis. The angle is measured on the frog-lateral radiograph of the pelvis. A line is drawn between the anterior and posterior tips of the epiphysis at the physeal plate level. Then, a perpendicular line is drawn to this Epiphyseal line. Next, a line is drawn along the mid-axis of the femoral shaft. The Epiphyseal-shaft angle is the angle formed by the intersection of the perpendicular line and the femoral shaft line. It is measured for both hips, and the magnitude of slip displacement is the angle of the involved hip minus the angle of the contralateral normal hip. Using the measurement of this angle, a slipped capital femoral epiphysis can be classified as mild (less than 30 degrees), moderate (from 30 to 50 degrees) or severe (greater than 50 degrees). If involvement is bilateral, 12 degrees can be used as the control angle.

➢ To access the Head Shaft (Slip) Angle tool:

- Select the Head Shaft (Slip) Angle option in the Measurement Tools tab or select Measurement Tools ➤ Pediatric ➤ Head Shaft (Slip) Angle. The tool appears on the image, as shown below:
Articulo-trochanteric Distance

This measurement tool measures the vertical distance from the superior articular surface of the femoral head to the proximal point of the greater trochanter along the anatomical axis of the femur. This enables you to assess the degree of growth arrest of the neck-head growth plate.

► **To access the Articulo-trochanteric Distance tool:**
- Select the Articulo-trochanteric Distance option in the Measurement Tools tab or select Measurement Tools ➔ Pediatric ➔ Articulo-Trochanteric Distance. The tool appears on the image, as shown below:
Epiphyseal Index

The Epiphyseal Index is the quotient between the largest width and the largest height of the epiphyseal nucleus, measured on the X-ray plate and shown in percentage of sphericity. This provides an indication of the degree of flattening of the epiphyseal nucleus induced by necrosis or mechanical deformity.

► **To access the Epiphyseal Index tool:**

- Select the **Epiphyseal Index** option in the **Measurement Tools** tab or select **Measurement Tools ➔ Pediatric ➔ Epiphyseal Index**. The tool appears on the image, as shown below:
Tibiofemoral Angle

The tibiofemoral angle is the angle created by the intersection of the anatomical axes of the femur and the tibia.

► **To access the Tibiofemoral Angle tool:**

- Select the **Tibiofemoral Angle** option in the **Measurement Tools** tab or select **Measurement Tools ➔ Pediatric ➔ Tibiofemoral Angle**. The tool appears on the image, as shown below:
Metaphyseal-Diaphyseal Angle

The metaphyseal-diaphyseal angle is the angle created by the intersection of a line through the transverse plane of the proximal tibial metaphysis, with a line perpendicular to the long axis of the tibial diaphysis. This angle represents the degree of deformity of the proximal end of the tibia in a patient with clinical bowleg deformity, and permits early differentiation between infantile tibia vara and physiological bowleg before the appearance of the radiographic changes of tibia vara.

► To access the Metaphyseal–Diaphyseal Angle tool:
 - Select the Metaphyseal-Diaphyseal Angle option in the Measurement Tools tab or select Measurement Tools ➔ Pediatric ➔ Metaphyseal-Diaphyseal Angle. The tool appears on the image, as shown below:
Trauma Measurements

The following trauma measurements can be made using TraumaCad measurements tools:

- **Limb Alignment Analysis**, below
- **Diaphyseal Fracture Angulation**, page 128
- **Metaphyseal Fracture Angulation**, page 129
- **Center Line Finder**, page 129
- **Simple Line**, page 130
- **Roof Arc**, page 130
- **Joint Line**, page 131

Limb Alignment Analysis

Trauma limb alignment analysis enables orthopedic surgeons to take unilateral or bilateral anatomical measurements, compare them to normative standards and to simulate corrective procedures. Easy-to-use wizards help surgeons produce a wide range of anatomical measurements. Each measurement is automatically compared to the normal parameters published in the literature and to the contralateral limb in the bilateral module, providing instant evaluations of patient anatomy. Measurements and evaluations integrate into patient files for an easy transition to digital radiology.

The steps for using this tool are the same as those described in the *Limb Alignment Analysis* section on page 80. Consult this section and its subsections for more details.

► To access the trauma Limb Alignment Analysis tool:

- Select the **Limb Alignment Analysis** option in the **Measurement Tools** tab. The tool appears on the image.
Diaphyseal Fracture Angulation

This measurement tool measures the angle between the long axes of two long bones. The points are adjusted to the edges of the bones and the angle between their center lines is measured and displayed.

► To access the Diaphyseal Fracture Angulation tool:
 - Select the Diaphyseal Fracture Angulation option in the Measurement Tools tab or select Measurement Tools ➔ Trauma ➔ Diaphyseal Fracture Angulation. The tool appears on the image, as shown below:
Metaphyseal Fracture Angulation

This tool measures the angle between the long axis of a long bone and the joint line of the bone. The points are adjusted to the edges of the bone and its articular surface and the angle between them is measured and displayed.

► To access the Metaphyseal Fracture Angulation tool:
 - Select the Metaphyseal Fracture Angulation option in the Measurement Tools tab or select Measurement Tools ➔ Trauma ➔ Metaphyseal Fracture Angulation. The tool appears on the image, as shown below:

Center Line Finder

The Center Line Finder measurement tool is used for locating the center line of long bones. Adjust the four points to the edges of the bone to display the center line. This tool works as described on page 107. Consult this section for more details.

► To access the trauma Center Line Finder tool:
 - Select the Center Line Finder option in the Measurement Tools tab. The tool appears on the image.
Simple Line

The Simple Line tool displays a line on the image that can be manipulated. If the line crosses a second line, such as a Center line or Joint line, the angle between them is calculated. This tool works as described on page 108. Consult this section for more details.

To access the trauma Simple Line tool:

- Select the Simple Line option in the Measurement Tools tab. The tool appears on the image.

Roof Arc

The roof arc concept was originally described by Matta. It helps determine the amount of intact acetabular dome and is a useful method for determining the need for surgery. Measurements are made on AP, obturator and iliac oblique views, as follows:

- A vertical line is drawn to the geometric center of the acetabulum.
- Another line is drawn through a point where a fracture line intersects the acetabulum and again to the geometric center of the acetabulum.
- Angles drawn in this way represent medial, anterior or posterior roof arcs as seen on AP, obturator oblique or iliac views, respectively.
To access the Roof Arc tool:

- Select the **Roof Arc** option in the **Measurement Tools** tab or select **Measurement Tools ➔ Trauma ➔ Roof Arc**. The tool appears on the image, as shown below:

![Image of Roof Arc tool](image)

Joint Line

The Joint Line measurement tool enables you to select, in advance, the inclination, location and orientation of the Joint line for various measurements, such as deformity evaluation, joint replacement, preoperative planning and so on. This tool works as described on page 161. Consult this section for more details.

To access the trauma Joint Line tool:

- Select the **Joint Line** option in the **Measurement Tools** tab. The tool appears on the image.
Spine Measurements

The following spine measurements can be made using TraumaCad measurements tools:

- **Vertebral Labeling**, below
- **Cobb Angle**, page 135
- **Double Cobb Angle**, page 136
- **Triple Cobb Angle**, page 137
- **Pelvic Radius Angle**, page 137
- **Sacral Obliquity**, page 139
- **Coronal Balance**, page 140
- **Sagittal Balance**, page 141
- **Spondylolisthesis**, page 142
- **Thoracic Kyphosis Angle**, page 143
- **Thoracic Trunk Shift**, page 144
- **T1 Tilt Angle**, page 144
- **Lumbar Lordosis Angle**, page 146
- **Spine Slip Angle**, page 147

Vertebral Labeling

This tool enables you to label spine vertebrae. There are various kinds of vertebrae, including:

- Cervical, designated by C on the image
- Thoracic, designated by T on the image
- Lumbar, designated by L on the image
To use the Vertebrae Labeling tool:

1. Select the Vertebrae Labeling option in the Measurement Tools tab. The following window opens:

2. Click the Cranial button to label cranial (superior) vertebrae, or click the Caudal button to label caudal (inferior) vertebrae.

3. Select the first vertebra to label in the First Vertebra dropdown list, as shown below:
4 Click the Yes or No button, as appropriate, to indicate whether there are abnormal vertebrae. If you select Yes, select the appropriate radio button(s) for the abnormal vertebra(e).

<table>
<thead>
<tr>
<th>Abnormal Vertebra</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8</td>
</tr>
<tr>
<td>C9</td>
</tr>
</tbody>
</table>

5 Click Accept to label the first vertebra.

6 Click on the first vertebra you want to label. The label is added to the image.

7 Repeat step 6 as many times as needed to label additional vertebrae. TraumaCad automatically moves to the next vertebra to assign the next label. It also takes any abnormal vertebrae into account for this purpose.

8 After you have labeled the vertebrae in the image, click Finish. You can move the labels on the image using standard TraumaCad methods.
Cobb Angle

The Cobb Angle measurement is used for evaluation of curves in scoliosis on an AP radiographic projection of the spine.

When assessing a curve the apical vertebra is first identified. This is the most likely displaced and rotated vertebra with the least tilted endplate. The end/transitional vertebra are then identified through the curve above and below. The end vertebrae are the most superior and inferior vertebras that are least displaced and rotated and have the maximally tilted endplate.

A line is drawn along the superior endplate of the superior end vertebra and a second line is drawn along the inferior endplate of the inferior end vertebra. The angle between these two lines is measured as the Cobb angle.

In S-shaped scoliosis, where there are two contiguous curves, the lower-end vertebra of the upper curve represents the upper-end vertebra of the lower curve. In some cases, there may be a third contiguous curve.

As a general rule, a Cobb angle of 10 is regarded as a minimum angulation to define scoliosis.
To access the Cobb Angle tool:

- Select the Cobb Angle option in the Measurement Tools tab or select Measurement Tools ➔ Spine ➔ Cobb Angle. The tool appears on the image, as shown below:

![Cobb Angle tool](image)

Double Cobb Angle

The Double Cobb Angle measurement tool works the same as the Cobb Angle tool. See page 135 for more details.

To access the Double Cobb Angle tool:

- Select the Double Cobb Angle option in the Measurement Tools tab or select Measurement Tools ➔ Spine ➔ Double Cobb Angle. The tool appears on the image.
Triple Cobb Angle

The Triple Cobb Angle measurement tool works the same as the Cobb Angle tool. See page 135 for more details.

► **To access the Triple Cobb Angle tool:**

- Select the *Triple Cobb Angle* option in the *Measurement Tools* tab or select *Measurement Tools ➔ Spine ➔ Triple Cobb Angle*. The tool appears on the image.

Pelvic Radius Angle

There are three different measurements that are used to describe pelvic morphology, based on standing lateral radiographs:

- **Pelvisacral angle (PSA)**, which represents the angle between a line tangent to the sacral endplate and the line through the center of the hip joints and the middle of the sacral endplate.

- **Pelvic incidence (PI) angle**, which is the complement angle to the pelvisacral angle.

- **Pelvic lordosis angle (PLA)**, which represents the angle between a line tangent to the sacral endplate and the line through the center of the hip joints and the posterior aspect of the sacral endplate.

The PLA, PSA and PI are very similar and are equally good methods to assess pelvic morphology.
To access the Pelvic Radius Angle tool:

- Select the Pelvic Radius Angle option in the Measurement Tools tab or select Measurement Tools ➔ Spine ➔ Pelvic Radius Angle. The tool appears on the image, as shown below:
Sacral Obliquity

This tool measures the angular deviation of the sacrum from the line drawn parallel to a line across the femoral heads on a supine AP view of the sacrum.

To access the Sacral Obliquity tool:
- Select the Sacral Obliquity option in the Measurement Tools tab or select Measurement Tools → Spine → Sacral Obliquity. The tool appears on the image, as shown below:
Coronal Balance

This tool measures the alignment of the spine on the coronal plane. The horizontal distance between the midpoints of the C7 body to the center of the sacrum on an upright long cassette PA radiograph of the spine is measured and displayed.

► To access the Coronal Balance tool:
- Select the Coronal Balance option in the Measurement Tools tab or select Measurement Tools ➔ Spine ➔ Coronal Balance. The tool appears on the image, as shown below:
Sagittal Balance

This tool measures the alignment of the spine on the sagittal plane. The horizontal distance between the midpoints of the C7 body to the posterior superior corner of the sacrum on an upright long cassette lateral radiograph of the spine is measured and displayed.

► To access the Sagittal Balance tool:
 - Select the Sagittal Balance option in the Measurement Tools tab or select Measurement Tools ➔ Spine ➔ Sagittal Balance. The tool appears on the image, as shown below:
Spondylolysthesis

Spondylolysthesis is forward slippage of a vertebra onto the next vertebra below it. The most commonly used grading system for Spondylolysthesis is the one proposed by Meyerding in 1947.

The degree of slippage is measured as the percentage of distance the anteriorly translated vertebral body has moved forward relative to the superior endplate of the vertebra below. Classifications use the following grading system:

- **Grade 0:** No slippage
- **Grade 1:** 1-25% slippage
- **Grade 2:** 26-50% slippage
- **Grade 3:** 51-75% slippage
- **Grade 4:** 76-100% slippage
- **Grade 5:** Greater than 100% slippage (spondyloptosis)

➢ **To access the Spondylolysthesis tool:**

- Select the **Spondylolysthesis** option in the **Measurement Tools** tab or select **Measurement Tools ➔ Spine ➔ Spondylolysthesis**. The tool appears on the image, as shown below:
Thoracic Kyphosis Angle

This tool measures the posterior convex angulation of the lumbar spine. The recommended measurement of thoracic Kyphosis from a lateral radiograph is the angle between the superior endplate of the highest measurable thoracic vertebra, usually T-2 or T-3, and the inferior endplate of T-12.

► To access the Thoracic Kyphosis Angle tool:
- Select the Thoracic Kyphosis Angle option in the Measurement Tools tab or select Measurement Tools ➔ Spine ➔ Thoracic Kyphosis Angle. The tool appears on the image, as shown below:
Thoracic Trunk Shift

This tool measures the trunk shift from the center of a line at the height of the apical thoracic vertebra to the central sacral vertebral line.

► To access the Thoracic Trunk Shift tool:
- Select the **Thoracic Trunk Shift** option in the **Measurement Tools** tab or select **Measurement Tools ➔ Spine ➔ Thoracic Trunk Shift**. The tool appears on the image, as shown below:
T1 Tilt Angle

The angle between a line along the cephalad endplate of T1 to a line perpendicular to the vertical edge of the radiograph.

► To access the T1 Tilt Angle tool:
- Select the T1 Tilt Angle option in the Measurement Tools tab or select Measurement Tools ➔ Spine ➔ T1 Tilt Angle. The tool appears on the image, as shown below:
Lumbar Lordosis Angle

This tool measures the anterior convex angulation of the lumbar spine. The recommended measurement of lumbar lordosis from a lateral radiograph is the angle between the superior endplate of L-1 and the superior endplate of S-1.

► To access the Lumbar Lordosis Angle tool:

- Select the Lumbar Lordosis Angle option in the Measurement Tools tab or select Measurement Tools ➔ Spine ➔ Lumbar Lordosis Angle. The tool appears on the image, as shown below:
Spine Slip Angle

This tool measures the angle that is formed by extending a line along the superior endplate of the body of L5 until it intersects with a line that is perpendicular to a line that is drawn along the posterior border of the body of first sacral vertebra.

► To access the Spine Slip Angle tool:

- Select the Spine Slip Angle option in the Measurement Tools tab or select Measurement Tools ➔ Spine ➔ Spine Slip Angle. The tool appears on the image, as shown below:
Foot and Ankle Tools

The following foot and ankle measurements can be made using TraumaCad measurements tools:

- Foot Osteotomies Wizard, below
- Hallux Valgus Angle, page 154
- Hallux Valgus Interphalangeus Angle, page 155
- Intermetatarsal Angle, page 156
- DMAA (Distal Metatarsal Articular Angle), page 157
- PMAA (Proximal Metatarsal Articular Angle), page 158
- Talar Tilt, page 159

Foot Osteotomies Wizard

The Foot Osteotomies Wizard enables orthopedic surgeons to take unilateral or bilateral anatomical measurements, compare them to normative standards and to simulate corrective procedures. Easy-to-use wizards help surgeons produce a wide range of anatomical measurements. Each measurement is automatically compared to the normal parameters published in the literature and to the contralateral limb in the bilateral module, providing instant evaluations of patient anatomy. Measurements and evaluations integrate into patient files for an easy transition to digital radiology.
To use the Foot Osteotomies Wizard tool:

1. Select the Foot Osteotomies Wizard option in the Measurement Tools tab, as shown below:

![Foot Osteotomies Wizard screenshot](image)

2. Specify whether you want to measure unilaterally or bilaterally by selecting the appropriate radio button from the dropdown list.

![Radio button screenshot](image)

3. Follow the steps in the wizard and mark the relevant points on the image corresponding to each step.

 A magnifying glass opens automatically that enlarges the relevant area to help you position the points.

NOTE:

The steps shown below are those that appear in the wizard when you select Unilateral. For the Bilateral option, these same steps are performed on both feet.
The following shows an example of the image after the twenty-seventh point has been marked (Bilateral option):
A window such as the one below is displayed:

![Image of a window with anatomical measurements]

The anatomical measurements are shown in the top-left corner of the **Measurement Tools** tab.

The following measurements are calculated using the wizard:

- **Hallux Valgus Angle (HVA):** The angle between the longitudinal axes of the metatarsus and proximal phalanx of the big toe.
- **Intermetatarsal Angle (IMA):** The angle between the longitudinal axes of the first and second metatarsal bones.
- **Distal Metatarsal Articular Angle (DMAA):** The complement angle to 90 degrees for an angle between the longitudinal axis of the first metatarsus to its distal articular surface.

Select the **Store preoperative measurements** checkbox to store the associated measurements.

Foot Osteotomies Simulation

After completing the foot deformity measurements, a simulation of osteotomies can be done. Be sure that you stored the measurements from the Foot Osteotomies Wizard before proceeding.

For osteotomies, define the fragments using the **Define Fragment** tool, which is accessible from the toolbar and the menu bar. Double-click a fragment to cut the fragment.
Then, choose the exact location of the osteotomy in the *Location of Osteotomy* window.

The red circle that appears after completing the osteotomy is the axis of rotation of the fragment and should be placed manually on the medial or lateral cortex of the bone for the opening/closing wedge.

Simulation of the osteotomies can now be done by moving the green dot or by clicking on the Ctrl key on the keyboard while moving the distal fragment.

Multiple osteotomies can be done for the same procedure.

Now you can zoom in and measure the osteotomies’ parameters, such as length angle and so on.
The projected post-operative measurements are displayed in a table in the Measurement Tools tab.
Hallux Valgus Angle

This tool measures the angle between the longitudinal axes of the metatarsus and the proximal phalanx of the big toe.

► To access the Hallux Valgus Angle tool:
- Select the Hallux Valgus Angle option in the Measurement Tools tab or select Measurement Tools ➔ Foot and Ankle ➔ Hallux Valgus Angle. The tool appears on the image, as shown below:
Hallux Valgus Interphalangeus Angle

This measurement tool measures the angle between the longitudinal axes of the proximal phalanx and the middle phalanx of the big toe.

► **To access the Hallux Valgus Interphalangeus Angle tool:**
 - Select the **Hallux Valgus Interphalangeus Angle** option in the **Measurement Tools** tab or select **Measurement Tools ➔ Foot and Ankle ➔ Hallux Valgus Interphalangeus Angle**. The tool appears on the image, as shown below:
Intermetatarsal Angle

This measurement tool measures the angle between the longitudinal axes of the first and second metatarsal bones.

► **To access the Intermetatarsal Angle tool:**

- Select the **Intermetatarsal Angle** option in the **Measurement Tools** tab or select **Measurement Tools ➔ Foot and Ankle ➔ Intermetatarsal Angle**. The tool appears on the image, as shown below:
DMAA Distal Metatarsal Articular Angle

This measurement tool measures the complement angle to 90 degrees of an angle between the longitudinal axes of the first metatarsus to its distal articular surface.

► To access the Distal Metatarsal Articular Angle tool:

- Select the Distal Metatarsal Articular Angle (DMAA) option in the Measurement Tools tab or select Measurement Tools ➔ Foot and Ankle ➔ Distal Metatarsal Articular Angle (DMAA). The tool appears on the image, as shown below:
PMAA Proximal Metatarsal Articular Angle

This measurement tool measures the complement angle to 90 degrees of an angle between the longitudinal axes of the first metatarsus to its proximal articular surface.

► **To access the Proximal Metatarsal Articular Angle tool:**
- Select the *Proximal Metatarsal Articular Angle (PMAA)* option in the *Measurement Tools* tab or select *Measurement Tools ➔ Foot and Ankle ➔ Proximal Metatarsal Articular Angle (PMAA)*. The tool appears on the image, as shown below:
Talar Tilt

This tool measures the angle between the ankle articular surfaces of the tibia and talus.

► **To access the Talar Tilt tool:**
- Select the Talar Tilt option in the Measurement Tools tab or select Measurement Tools ➔ Foot and Ankle ➔ Talar Tilt. The tool appears on the image, as shown below:
Upper Limb Measurements

The following upper limb measurements can be made using TraumaCad measurements tools:
- Center Line Finder, below
- Simple Line, below
- Joint Line, below

Center Line Finder

The Center Line Finder measurement tool is used for locating the center line of long bones. Adjust the four points to the edges of the bone to display the center line. This tool works as described in the Center Line Finder section on page 107. Consult this section for more details.

► To access the upper limb Center Line Finder tool:
- Select the Center Line Finder option in the Measurement Tools tab. The tool appears on the image.

Simple Line

The Simple Line tool displays a line on the image that can be manipulated. If the line crosses a second line, such as a Center line or Joint line, the angle between them is calculated. This tool works as described in the Simple Line section on page 108. Consult this section for more details.

► To access the upper limb Simple Line tool:
- Select the Simple Line option in the Measurement Tools tab. The tool appears on the image.
Joint Line

The Joint Line measurement tool enables you to select in advance the inclination, location and orientation of the Joint line for various measurements, such as deformity evaluation, joint replacement, preoperative planning and so on. This tool works as described in the *Joint Line* section on page 161. Consult this section for more details.

► To access the upper limb Joint Line tool:

- Select the **Joint Line** option in the **Measurement Tools** tab. The tool appears on the image.

CORA Tools

Center Line Finder

The Center Line Finder measurement tool is used for locating the center line of long bones. Adjust the four points to the edges of the bone to display the center line. This tool works as described in the *Center Line Finder* section on page 107. Consult this section for more details.

► To access the CORA Center Line Finder tool:

- Select the **CORA tools** option in the **Measurement Tools** tab. The tool appears on the image.

Joint Line

The Joint Line measurement tool enables you to select, in advance, the inclination, location and orientation of the Joint line for various measurements, such as deformity evaluation, joint replacement, preoperative planning and so on.

You can adjust the desired angle, as shown below:
You can also adjust its orientation (up-down) and direction (left-right):

You can also adjust the ratio between the two limbs of the joint line, as shown below:

► **To access the CORA Joint Line tool:**
 - Select the CORA tools option in the Measurement Tools tab. The tool appears on the image.
Growth Calculator

You can select the Launch Growth Calculator option from the Measurements Tools menu to display the following window:

Each tab of this window provides different options for predicting the growth of a particular anatomy in pediatric orthopedics, as described below.

Begin by entering descriptive information about the patient, such as the patient’s name, gender, date of birth and patient ID in the respective fields at the top of the window. Then, select the appropriate tab in the window, input the required information and click Answer.
The following buttons are available at the bottom of the window:

- **Save to File**: Saves Growth Calculator data to an *.XML file
- **Load from File**: Imports previously saved Growth Calculator data from an *.XML file
- **Export to Excel**: Saves Growth Calculator data to a *.CSV file
- **Print Report**: Prints Growth Calculator data
- **About**: Displays Growth Calculator version information
- **Exit**: Closes the Growth Calculator

Height Prediction Page

Purpose: Predicts the height of this patient at maturity.

Formula: Predicted Height = Current Height x Height Multiplier (specific for age and sex, using a normal chart)

Leg Length Prediction Page

Purpose: Predicts leg length at maturity.

Formula: Predicted length at maturity = Current Length x Multiplier (specific for age and sex, using a lower limb chart)

Growth remaining = Current length - predicted length

Arm Length Prediction Page

Purpose: Predicts the length of an arm at maturity.

Formula: Predicted length at maturity = Current Length x Multiplier (specific for age and sex)

Growth remaining = Current length - predicted length

Leg Length Discrepancy Prediction - Congenital Page

Purpose: Predicts the leg length discrepancy at maturity for this patient with congenital LLD. (Congenital = congenital femoral deficiency, fibular hemimelia, tibial hemimelia, hemihypertrophy, hemiatrophy, posteromedial bow of tibia)

Formula: Predicted length discrepancy at maturity = Current Length Discrepancy x Multiplier (specific for age and sex, using a lower limb chart)
Leg Length Discrepancy Prediction - Developmental Page

Purpose: Predicts the leg length discrepancy at maturity for this patient with developmental LLD. (Developmental = Ollier’s, polio, growth arrest, also works for congenital discrepancies after lengthening)

Formulas: Predicted length discrepancy at maturity = current difference + [1 - (short leg current - short leg previous)/(long leg current - long leg previous)] x Long leg current (Multiplier (specific for age and sex using a lower limb chart) - 1)

Inhibition = 1 - (short leg current - short leg previous)/(long leg current - long leg previous)

Arm Length Discrepancy Prediction - Congenital Page

Purpose: Predicts arm length discrepancy at maturity for this patient with congenital LLD. (Congenital = hemihypertrophy, hemiatrophy)

Formula: Predicted length discrepancy at maturity = Current Length Discrepancy x Multiplier (specific for age and sex, using an upper limb chart)

Arm Length Discrepancy Prediction - Developmental Page

Purpose: Predicts arm length discrepancy at maturity for this patient with developmental LLD. (Developmental = Ollier’s, polio, growth arrest, also works for congenital discrepancies after lengthening)

Formulas: Predicted length discrepancy at maturity = current difference + [1 - (short arm current - short arm previous)/(long arm current - long arm previous)] x Long arm current (Multiplier [specific for age and sex using upper limb chart] - 1)

Inhibition = 1 - (short arm current - short arm previous)/(long arm current - long arm previous)
Timing of Epiphyseodesis at the Knee Page

Purpose: Suggests the timing for epiphyseodesis around the knee of a long limb to equalize the limb length discrepancy at maturity.

Formulas: Multiplier at correct age for epiphyseodesis = \[\frac{\text{current long leg length} \times \text{current multiplier specific for age and sex using lower limb chart}}{\text{current long leg length} \times \text{current multiplier specific for age and sex using lower limb chart} - \text{desired correction} / \text{kappa}}\]

Kappa should be calculated for three scenarios: distal femur = 0.71, proximal tibia = 0.57, both distal femur and proximal tibia = 0.67

The resultant Multiplier at age correct for epiphyseodesis must be “translated” back to a chronologic age using the lower extremity Multiplier chart specific for age and sex.

Timing of Stapling for Hemi-epiphyseodesis Page

Purpose: Suggests the timing for hemi-epiphyseodesis around the knee to correct angular deformities, if the staple will not be removed.

Formulas: Multiplier at correct age for hemi-epiphyseodesis = \[\frac{\text{current bone length} \times \text{current multiplier specific for age and sex using lower limb chart}}{\text{current bone length} \times \text{current multiplier specific for age and sex using lower limb chart} - [(\text{width of the growth plate} \times \text{desired correction/57}) / \text{kappa}]}\]

Kappa should be calculated for one of two scenarios: distal femur = 0.71, proximal tibia = 0.57

The resultant Multiplier at age correct for hemi-epiphyseodesis must be “translated” back to a chronologic age using the lower extremity Multiplier chart specific for age and sex.
Timing of Staple Removal for Hemi-epiphyseodesis Page

Purpose: Suggests the timing for removing a staple inserted for hemi-epiphyseodesis around the knee to correct angular deformities, assuming that the stapling was done well prior to skeletal maturity.

Formulas: Multiplier at correct age for removal of hemi-epiphyseodesis staple = [current bone length x current multiplier specific for age and sex using lower limb chart] / [(current bone leg length + [(width of the growth plate x desired correction/57)/ kappa]

Kappa should be calculated for one of two scenarios: distal femur = 0.71, Proximal tibia = 0.57

The resultant Multiplier at age for removal of hemi-epiphyseodesis staple must be “translated” back to a chronologic age using the lower extremity Multiplier chart specific for age and sex.

CDC Growth Charts

The growth charts consist of a series of percentile curves that illustrate the distribution of selected body measurements in children in the United States. The 1977 growth charts were developed by the National Center for Health Statistics (NCHS) as a clinical tool for health professionals to determine if the growth of a child is adequate. The 1977 charts were also adopted by the World Health Organization for international use.

When the 1977 NCHS growth charts were first developed, NCHS recommended that they be revised periodically, as necessary. With more recent and comprehensive national data now available, along with improved statistical procedures, the 1977 growth charts have been revised and updated to make them a more valuable clinical tool for health professionals.

The 2000 CDC growth charts represent the revised version of the 1977 NCHS growth charts. Most of the data used to construct these charts come from the National Health and Nutrition Examination Survey (NHANES), which has periodically collected height, weight and other health information about the American population since the early 1960s.
This page is intentionally left blank.
Chapter 5

Reports

NOTE:
Procedures and sections in the guide are marked to indicate whether they apply to standalone mode () or web client mode ().

Generating Reports

A report consists of the selected images with templates or measurements that were added and textual information describing the patient, the measurements, the surgical procedure to be performed and/or the implant to be used and any text that the surgeon chooses to add.

WARNING!
The material generated by the program is two dimensional. Before performing a procedure, confirm that the actual bone matches the image produced by the software.
An example of an HTML report is shown below. It can be saved locally, printed, committed to PACS, uploaded to Orthoweb or sent to OrthoFlow for future reference.
To generate a report:

- Select the **Report** tab. The following is then displayed:

![Report tab](image)

The following report options are provided:

- **Original Image**: Specifies that the original image is included in the report.
- **Templated Image**: Specifies that the image after templating in TraumaCad is included in the report.
- **Comments**: Adds specific user comments to the report.
- **HTML Report**: Displays an HTML report. You should save this report or print it before opening another case study.
• **Preview**: Previews the image to be stored. For example, as shown below:

![Image Preview](image_preview.png)

• **Save Case**: Saving a case enables you to store all its images, templates, measurements and case information and later reopen it in TraumaCad. This option opens a window in which you can select to save this case by choosing any of the following options:
 - Upload it to Orthoweb.
 - Use JPEG Lossy Compression: When this option is selected, the DICOM files in the .tcc file sent to OrthoWeb are compressed using JPEG Lossy compression.
 - Commit it to PACS.
 - Save it locally in the **My TraumaCad Cases** folder.
 - Save it to an external device drive that you select, such as a memory stick.
 - Send it to OrthoFlow, which is another application by Voyant Health that provides quick and easy distribution of digital images in the Orthopedic clinics with an automatic login to PACS. A window opens enabling you to select to which room of the clinic to send the image.
Installing TraumaCad

NOTE:
Procedures and sections in the guide are marked to indicate whether they apply to standalone mode () or web client mode ().

Installation of TraumaCad must be performed on a computer that is connected to the Web. TraumaCad can be installed from either a CD or downloaded from Voyant Health’s website.

NOTE:
For standalone versions of TraumaCad, the PACS configuration must first be set up in order to specify the connection properties between TraumaCad and the PACS system. Typically, this only needs to be performed once by a system administrator after the initial installation of TraumaCad. The system administrator should make sure to enter the relevant connection properties in the PACS system so that it recognizes TraumaCad. For more information, see page 180.

Installing TraumaCad

Installation of TraumaCad must be performed on a computer that is connected to the Web. TraumaCad can be installed from either a CD or downloaded from Voyant Health’s website at www.voyanthealth.com.

NOTE:
After installation and the first launch, TraumaCad does not need to be connected to the Web.
Installing from a CD

If you are installing from a CD, the following window is displayed automatically:

Click on Install TraumaCad.

Installing via the Web

If you are installing via the Web, launch Internet Explorer and enter the URL of the organization’s server that runs TraumaCad Server. The following window is displayed:

Click Start Here and when asked whether to run or save the program, select Run. Then, follow the procedure described below.
How to Install TraumaCad

The TraumaCad installation program will check if Windows.Net is installed on your computer. If not, it will download and install it. You are then required to restart your computer. If you are installing from a CD, do not remove it from the drive.

► To install TraumaCad:

1. The Welcome window is displayed, as shown below:

 Click Next

The License Agreement window is displayed:

Read the agreement, select this button and click Next
2 The *Customer Information* window is displayed:

![Customer Information Window]

Enter your credentials here and click **Next**.

3 The *Choose TraumaCad Language* window is displayed:

![Choose Language Window]

Select the language and click **Next**.
4 The **Ready to Install the Program** window is displayed:

![Ready to Install the Program](image)

Click **Install**

5 The **InstallShield Wizard Completed** window is displayed:

![InstallShield Wizard Completed](image)

Click **Finish**
This page is intentionally left blank.
Appendix B

Standalone Usage

NOTE:
Procedures and sections in the guide are marked to indicate whether they apply to standalone mode () or web client mode ().

This appendix describes several procedures that may be required in standalone mode, as follows:

- Setting the PACS Configuration, page 180
- Importing Images from a CD, page 181
- Capturing Images from the Screen, page 182
Setting the PACS Configuration (Optional)

This optional step only applies to standalone versions of TraumaCad. It enables you to specify the connection properties between TraumaCad and the PACS system. Typically, this only needs to be performed once by a system administrator after the initial installation of TraumaCad. The system administrator should make sure to enter the relevant connection properties in the PACS system so that it recognizes TraumaCad.

NOTE:
Client/Server versions of TraumaCad can skip this step since it is performed on the server, as described in the *TraumaCad Administrator's Guide*.

▶ To set up the PACS Configuration:

1. In the menu bar, select **File ➤ PACS Configuration**. The *PACS Configuration* window is displayed:

2. Enter the relevant PACS connection information into the appropriate fields. This information should be available to your network administrator.

3. Click **OK** to save and apply these settings.
Importing Images from a CD

On the standalone version of TraumaCad, two options are provided for importing images into your local cache on your local computer. You can then commit these to the PACS system if you like. These are:

- **Import DICOM Folder**
- **Import Image**: Imports a single image file that is a JPG, DICOM or another file format. A window is displayed in which you can enter the information about this image that will be stored with it.

WARNING!

When importing an image or using an image from the local cache, make sure that you import data from the correct patient, and use the correct image from the correct patient.

NOTE:

Select **File ➔ Delete Cache** to clear the cache of images on your local computer.
Capturing Images from the Screen

Select the Screen Capture option in the File menu to capture any image that is displayed on the screen into TraumaCad. The following window is displayed:

![Screen Capture Window]

Drag the Finder Tool over the image to be captured. It is then added to TraumaCad, and you can later commit it to PACS if you like.
Appendix C

Managing Implant Templates

TraumaCad provides a large library of digital templates for a wide variety of orthopedic surgical procedures.

For the server version of TraumaCad, these implant images are automatically imported and updated on your computer from the TraumaCad server.

For the standalone version of TraumaCad, select **File ➔ Download Templates** in the menu bar to download templates of implants from Voyant Health’s global repository to your computer.

Each implant is provided in a variety of sizes and properties and each such group is called an implant **template**. Several implanting scenarios can be recorded and compared to find the optimal implant procedure. Once an implant is chosen, it can easily be scaled and manipulated.
Importing Implant Templates

Before TraumaCad is used for the first time, the implant templates should be imported. This procedure should also be performed from time to time to update the template library.
Managing Implant Templates

TraumaCad® User’s Guide

185

Templates Manager

After the Templates Downloader is launched, it assesses the locally stored templates and the latest templates on the Voyant Health server.

The Templates Downloader window lists the templates stored locally and those on Voyant Health’s TraumaCad server. Each row in the table represents one implant template. Each row contains the following fields:

- **State**: Displays the current state of the implant template on the TraumaCad client. The State is determined by comparing the TraumaCad client’s list of templates to the list stored on the TraumaCad server.
- **Implant Name**: The name of the implant template.
- **Manufacturer**: The manufacturer of the implant template.
- **Procedure**: The TraumaCad procedure for which the implant template can be used.
- **Classification**: The implant template type, as defined on the TraumaCad server.
- **Version No.**: The version number of the implant template on the TraumaCad server.
- **Last Modified**: The date the implant template was last changed on the TraumaCad server.
In the Select dropdown list, you can specify whether you want to choose all or some implant templates. Whichever option you select automatically checks the checkboxes of the corresponding implant templates in the table. The available options are:

- **New & Updated**: Selects implant templates that are either new to or that have been updated on the TraumaCad server. This is the default.
- **New**: Selects implant templates that exist on the TraumaCad server, but that do not exist on the local TraumaCad client.
- **Updated**: Selects implant templates that have been updated on the TraumaCad server. A newer version of this template exists on the server.
- **Existing**: Selects implant templates that currently exist on the TraumaCad client. This means that the latest version of the template already exists on the local client.
- **All**: Selects all implant templates in the table.
- **None**: Selects no implant templates in the table.

You can also select a specific implant template(s) by selecting its respective checkbox in the Select column of the table.

► **To download templates to the local client:**

1. Select the required templates by clicking the checkbox to the left of the template name or by selecting the relevant option in the Select dropdown list.

2. Click the **Download Selected Templates** button to start downloading the selected templates.
Other Templates Manager Options

The following other options are available in this window:

Searching for Templates

You can search for specific templates (meaning, filter the list of templates) by entering text, such as the template name or part of the name in the Filter area and clicking the Search Templates button to its right. You should then select one of the options from the dropdown menu in the right field in the Filter area to specify whether this text appears anywhere in the template information, in the State column, Implant Name column, Manufacturer column, Procedure column, Classification column or Version No: column.

Remove Selected Templates

Select the required templates by clicking the checkbox to the left of the template name and then click the Remove Selected Templates button to delete the implant template from the local TraumaCad client.
Change Templates Folder

By default, templates are stored locally in your drive (typically the C drive) under C:\Documents and Settings\All Users\Application Data\TraumaCad\Templates. To change the folder in which they are stored, click the Change Templates Folders button to display the Browse For Folder window in which you can select a different location for template storage.
3
3D Suite, 61
 Adding a 3D Template, 66
 Implant Navigation Window, 68
 MIP View, 65
 MPR View, 63
 Opening a 3D Image, 62
 3D Templates, 66

A
 Acetabular Index, 101, 117
 Anatomical Orientation, 30
 Angle Tool, 73
 Archiving, 4
 Articulotrochanteric Distance, 122
 Auto-Hip, 77
 Automatic Procedures, 9

B
 Bone Fragments
 Defining, 54
 Lassoing, 55
 Reducing, 53

C
 Calibration
 Copying Data, 38
 Images, 3, 31, 34, 36
 Calibration Sphere, 32
 Calibration Window, 34

 Capturing
 Images, 180
 Center Line Finder, 107, 128, 158, 159
 Center of Rotation, 104
 Circle Tool, 73
 Client/Server, 5
 Client/Server Functionality, 5
 Cobb Angle, 134
 Compressing
 Images, 28
 Contacting Us, x
 Copying
 Calibration Data, 38
 CORA Tools, 85, 159
 Center Line Finder, 159
 Joint Line, 159
 Coronal Balance, 138
 Cup Version, 103

D
 Defining
 Bone Fragments, 54
 Deformity, 69
 Diaphyseal Fracture Angulation, 127
 Displaying the Image, 3
 Distal Metatarsal Articular Angle, 155
 Double Cobb Angle, 135

E
 Epiphyseal Index, 123
Index

TraumaCad® User’s Guide

F
Finding Patients, 26
Foot and Ankle Tools, 146
 Distal Metatarsal Articular Angle, 155
Foot Osteotomies Simulation, 149
Foot Osteotomies Wizard, 146
Hallux Valgus Angle, 152
Hallux Valgus Interphalangeus Angle, 153
Intermetatarsal Angle, 154
Proximal Metatarsal Articular Angle, 156
Talar Tilt, 157
Foot Osteotomies Simulation, 149
Foot Osteotomies Wizard, 146
FreehandLine Tool, 75

G
Generating Reports, 167
Generic Tools, 72
Grouping
 Objects, 24
 Templates, 57
Growth Calculator, 161

H
Hallux Valgus Angle, 152
Hallux Valgus Interphalangeus Angle, 153
Head Shaft (Slip) Angle, 121
High Tibial Osteotomy, 109
Hip
 Auto, 77
Hip Deformity Analysis, 95, 112
Hip Measurements, 94
 Acetabular Index, 101
 Center of Rotation, 104
 Cup Version, 103
 Hip Deformity Analysis, 95
 Leg Length Discrepancy Tool, 100
 Stem Version, 105
 VCA Angle of Lequesne, 102

I
Images
 Calibrating, 31, 34, 36
 Capturing from the Screen, 180
 Compressing, 28
 Importing from CD, 179
 Loading from PACS, 26
 Preparing, 25
 Selecting, 27
Implant Navigation Window, 68
Implant Templates, 181
 Changing Default Folder, 186
 Importing, 182
 Removing, 185
 Searching For, 185
Importing
 Digital X-rays, 3
 Images from CD, 179
Installing
 TraumaCad, 171, 173
 TraumaCad from a CD, 172
 TraumaCad via the Web, 172
Interline Tool, 74
Intermetatarsal Angle, 154

J
Joint Line, 111, 130, 158, 159

K
Kit, 42
Knee Measurements, 106
 Center Line Finder, 107
 High Tibial Osteotomy, 109
 Joint Line, 111
 Simple Line, 108
 Tibial Cutting, 110
Lassoing
 Bone Fragments, 55
Launching
 TraumaCad, 7
Leg Length Discrepancy Tool, 100
Limb Alignment Analysis, 80, 126
 Marking Anatomical Points, 81
 Unilateral, 82
Line Tool, 74
Local Cases, 12
Locking Compression Plates, 59
Lumbar Lordosis Angle, 144

M
Manual Procedures, 9
Marking Anatomical Points, 81
Measuring the Anatomy, 71
Menu Bar, 15
Metaphyseal Fracture Angulation, 128
Metaphyseal-Diaphyseal Angle, 125
MIP View, 65
MPR View, 63
Multiple Views, 31
My Local Cases, 12

N
Neck Shaft Angle, 120
News, 13

O
Opening a 3D Image, 62
Original Images Folder, 12
OrthoMark, 33
OrthoWeb
 Account, 11
 Cases, 10

P
PACS Configuration, 178
Pediatric Measurements, 112
 Acetabular Index, 117
 Articulo-trochanteric Distance, 122
 Epiphyseal Index, 123
 Head Shaft (Slip) Angle, 121
 Hip Deformity Analysis, 112
 Metaphyseal-Diaphyseal Angle, 125
 Neck Shaft Angle, 120
 Reimer’s Index, 118
 Tibiofemoral Angle, 124
 VCA Angle of Lequesne, 119
Pelvic Radius Angle, 135
Performing
 Pre-operative Planning, 4
Plate Bending, 56
Positioning
 Implants, 49
Pre-operative Planning, 4
Preparing the Image, 25
Proximal Metatarsal Articular Angle, 156

Q
Quick Tour, 14

R
Reducing
 Bone Fragments, 53
Reimer’s Index, 118
Remove Marker after calibration, 35
Reports, 167
Resources Folder, 12
Right-click Menus, 23
Roof Arc, 129
Ruler Tool, 72
Index

TraumaCad® User's Guide

S

Sacral Obliquity, 137
Safety Symbols, xi
Sagittal Balance, 139
Scaling
X-rays, 32
Selecting
 Implants, 44
 Patient Images, 27
 TraumaCad Procedure, 3
Simple Line, 108, 129, 158
Specifying
 Anatomical Orientation, 3, 30
 Anatomical Region, 51
 Implant Properties, 47
Spine Measurements, 131
 Cobb Angle, 134
 Coronal Balance, 138
 Double Cobb Angle, 135
 Lumbar Lordosis Angle, 144
 Pelvic Radius Angle, 135
 Sacral Obliquity, 137
Sagittal Balance, 139
Spine Slip Angle, 145
Spondylolisthesis, 140
T1 Tilt Angle, 143
Thoracic Kyphosis Angle, 141
Thoracic Trunk Shift, 142
Triple Cobb Angle, 135
Vertebral Labeling, 131
Spine Slip Angle, 145
Spondylolisthesis, 140
Stem Version, 105
System Requirements, 6

T

T1 Tilt Angle, 143
Talar Tilt, 157
tcc, 13

Template Features
 Grouping, 57
 Locking Compression Plates, 59
 Plate Bending, 56
Templated Images Folder, 12
Templates, 56
 Kit, 42
Templates Manager, 183
 Changing Templates Folder, 186
 Removing Templates, 185
 Searching for Templates, 185
Templating, 43
 Positioning an Implant, 49
 Selecting an Implant, 44
 Specifying Implant Properties, 47
Text Annotations, 76
Thoracic Kyphosis Angle, 141
Thoracic Trunk Shift, 142
Tibial Cutting, 110
Tibiofemoral Angle, 124
Toolbar, 19
Trauma Measurements, 126
 Center Line Finder, 128
 Diaphyseal Fracture Angulation, 127
 Joint Line, 130
 Limb Alignment Analysis, 126
 Metaphyseal Fracture Angulation, 128
 Roof Arc, 129
 Simple Line, 129
TraumaCad
 Client/Server, 5
 Generic Tools, 72
 Getting Started, 1
 Implant Templates, 181
 Importing Digital X-ray, 3
 Installing, 171
 Launching, 7
 Menu Bar, 15
 PACS Configuration, 178
 Procedures, 39, 50
 Quick Tour, 14
Right-click Menus, 23
Selecting Procedure, 3
Specifying Anatomical Orientation, 3
Standalone, 5
Standalone Usage, 177
System Requirements, 6
Template Features, 56
Templating, 43
Toolbar, 19
Using, 2
Workflow, 2
Triple Cobb Angle, 135

Center Line Finder, 158
Joint Line, 158
Simple Line, 158

VCA Angle of Lequesne, 102, 119
Vertebral Labeling, 131

X-rays
Scaling, 32
This page is intentionally left blank.